4.29.4 Problems 301 to 400

Table 4.1617: Second order, Linear, non-homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

10252

\[ {} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

10253

\[ {} x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

10437

\[ {} y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

10438

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

10441

\[ {} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

10442

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2} \]

10444

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } \left (1+x \right )+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

10446

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

10447

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

10448

\[ {} y^{\prime \prime } \cos \left (x \right )+y^{\prime } \sin \left (x \right )-2 \cos \left (x \right )^{3} y = 2 \cos \left (x \right )^{5} \]

10449

\[ {} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

10450

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = x^{1+m} \]

10453

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

10454

\[ {} y^{\prime \prime }-2 b x y^{\prime }+y b^{2} x^{2} = x \]

10455

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

10456

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

12339

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0 \]

12341

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0 \]

12351

\[ {} y^{\prime \prime }+\sqrt {x}\, y^{\prime }+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0 \]

12353

\[ {} y^{\prime \prime }-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y \,{\mathrm e}^{2 x}-{\mathrm e}^{3 x} = 0 \]

12372

\[ {} x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0 \]

12381

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y-{\mathrm e}^{x} = 0 \]

12390

\[ {} x y^{\prime \prime }-x y^{\prime }-y-x \left (1+x \right ) {\mathrm e}^{x} = 0 \]

12406

\[ {} x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0 \]

12437

\[ {} x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right ) = 0 \]

12440

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y-x^{2} a = 0 \]

12444

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y-f \left (x \right ) = 0 \]

12447

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y-3 x^{3} = 0 \]

12455

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-x^{5} \ln \left (x \right ) = 0 \]

12456

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y-x \sin \left (x \right )-\left (x^{2} a +12 a +4\right ) \cos \left (x \right ) = 0 \]

12458

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0 \]

12459

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

12461

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (-v^{2}+x^{2}+1\right ) y-f \left (x \right ) = 0 \]

12463

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y-5 x = 0 \]

12464

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y-x^{2} \ln \left (x \right ) = 0 \]

12465

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y-x^{4}+x^{2} = 0 \]

12467

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y-x^{3} \sin \left (x \right ) = 0 \]

12509

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-2 \cos \left (x \right )+2 x = 0 \]

12512

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-n \left (n +1\right ) y+\frac {d}{d x}\operatorname {LegendreP}\left (n , x\right ) = 0 \]

12513

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }+2 = 0 \]

12517

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-a = 0 \]

12539

\[ {} x \left (x -1\right ) y^{\prime \prime }+\left (\left (\operatorname {a1} +\operatorname {b1} +1\right ) x -\operatorname {d1} \right ) y^{\prime }+\operatorname {a1} \operatorname {b1} \operatorname {d1} = 0 \]

12542

\[ {} x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{{7}/{3}} = 0 \]

12555

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }-\left (4 x^{2}+1\right ) y-4 \sqrt {x^{3}}\, {\mathrm e}^{x} = 0 \]

12558

\[ {} 4 x^{2} y^{\prime \prime }+5 x y^{\prime }-y-\ln \left (x \right ) = 0 \]

12562

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{2} \ln \left (x \right ) y^{\prime }+\left (\ln \left (x \right )^{2} x^{2}+2 x -8\right ) y-4 x^{2} \sqrt {{\mathrm e}^{x} x^{-x}} = 0 \]

12563

\[ {} \left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1 = 0 \]

12565

\[ {} \left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

12586

\[ {} x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y-\ln \left (x \right )^{3} = 0 \]

12588

\[ {} x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+x y-1 = 0 \]

12619

\[ {} y^{\prime \prime } = -\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \]

12659

\[ {} y^{\prime \prime } = -\frac {b y}{x^{2} \left (x -a \right )^{2}}+c \]

12711

\[ {} y^{\prime \prime } = -\frac {\sin \left (x \right ) y^{\prime }}{\cos \left (x \right )}-\frac {\left (2 x^{2}+x^{2} \sin \left (x \right )^{2}-24 \cos \left (x \right )^{2}\right ) y}{4 x^{2} \cos \left (x \right )^{2}}+\sqrt {\cos \left (x \right )} \]

13850

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0 \]

13990

\[ {} x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y = c \,x^{2} \left (x -a \right )^{2} \]

14231

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

14232

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-y^{\prime } \left (1+x \right )+6 y = x \]

14246

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = x \]

14247

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1 \]

14249

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2} \]

14250

\[ {} \sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x} \]

14253

\[ {} -x y+2 y^{\prime }+x y^{\prime \prime } = 2 \,{\mathrm e}^{x} \]

14254

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+y \,{\mathrm e}^{2 x} = {\mathrm e}^{4 x} \]

14257

\[ {} y+3 x^{5} y^{\prime }+x^{6} y^{\prime \prime } = \frac {1}{x^{2}} \]

14258

\[ {} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 4 x^{3} {\mathrm e}^{-x^{2}} \]

14266

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = x^{3} \]

14271

\[ {} y^{\prime \prime }+x y^{\prime } = x \]

14281

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x \]

14282

\[ {} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

14294

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

14302

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

14324

\[ {} x^{\prime }+t x^{\prime \prime } = 1 \]

14353

\[ {} \frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

14447

\[ {} t^{2} x^{\prime \prime }-2 x = t^{3} \]

14450

\[ {} x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

14451

\[ {} t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

14804

\[ {} x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

14805

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 1 \]

14806

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = \left (x +2\right )^{2} \]

14807

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

14808

\[ {} x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \]

14809

\[ {} \left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

14810

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

14825

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

14826

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

14827

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

14828

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

14829

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

14834

\[ {} x^{2} y^{\prime \prime }-2 y = 4 x -8 \]

14835

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]

14836

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]

14837

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

14838

\[ {} x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]

15074

\[ {} t^{2} x^{\prime \prime }-2 x = t^{3} \]

15076

\[ {} \left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \]

15185

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

15207

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

15212

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

15251

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

15253

\[ {} x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]