50.2.31 problem 30

Internal problem ID [10121]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 30
Date solved : Tuesday, September 30, 2025 at 07:03:19 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-x y-x&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 14
ode:=diff(diff(y(x),x),x)-x*y(x)-x = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {AiryAi}\left (x \right ) c_2 +\operatorname {AiryBi}\left (x \right ) c_1 -1 \]
Mathematica. Time used: 0.035 (sec). Leaf size: 51
ode=D[y[x],{x,2}]-x*y[x]-x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \operatorname {AiryAi}(x) \int _1^x-\pi \operatorname {AiryBi}(K[1]) K[1]dK[1]+\operatorname {AiryBi}(x) \int _1^x\pi \operatorname {AiryAi}(K[2]) K[2]dK[2]+c_1 \operatorname {AiryAi}(x)+c_2 \operatorname {AiryBi}(x) \end{align*}
Sympy. Time used: 0.042 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) - x + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} Ai\left (x\right ) + C_{2} Bi\left (x\right ) \]