44.3.13 problem 2(c)

Internal problem ID [9123]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations. Page 15
Problem number : 2(c)
Date solved : Tuesday, September 30, 2025 at 06:04:44 PM
CAS classification : [_linear]

\begin{align*} x \ln \left (x \right ) y^{\prime }+y&=3 x^{3} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \\ \end{align*}
Maple
ode:=x*ln(x)*diff(y(x),x)+y(x) = 3*x^3; 
ic:=[y(1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=(x*Log[x])*D[y[x],x]+y[x]==3*x^3; 
ic={y[1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy. Time used: 0.162 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x**3 + x*log(x)*Derivative(y(x), x) + y(x),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{3} - 1}{\log {\left (x \right )}} \]