43.4.4 problem 1(d)

Internal problem ID [8901]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 52
Problem number : 1(d)
Date solved : Tuesday, September 30, 2025 at 05:59:54 PM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 9
ode:=diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x +c_2 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 12
ode=D[y[x],{x,2}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 x+c_1 \end{align*}
Sympy. Time used: 0.014 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x \]