6.32 Problems 3101 to 3200

Table 6.63: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

3101

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }-20 y = 0 \]

3102

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

3103

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-8 y^{\prime }+8 y = 0 \]

3104

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-6 y^{\prime }+2 y = 0 \]

3105

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }-4 y = 0 \]

3106

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+10 y^{\prime }-15 y = 0 \]

3107

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+11 y^{\prime }-40 y = 0 \]

3108

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-12 y^{\prime }+16 y = 0 \]

3109

\[ {} 4 y^{\prime \prime \prime }+12 y^{\prime \prime }-3 y^{\prime }+14 y = 0 \]

3110

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }-6 y^{\prime \prime }+8 y^{\prime }-8 y = 0 \]

3111

\[ {} y^{\prime \prime }-4 y = 3 \cos \left (x \right ) \]

3112

\[ {} y^{\prime \prime }+y = \sin \left (2 x \right ) \]

3113

\[ {} y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{x} \]

3114

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x} \]

3115

\[ {} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

3116

\[ {} y^{\prime \prime }+y^{\prime }+y = x^{2} \]

3117

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

3118

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \]

3119

\[ {} y^{\prime \prime }-4 y = x +{\mathrm e}^{2 x} \]

3120

\[ {} y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (3 x \right ) \]

3121

\[ {} y^{\prime \prime }-y^{\prime }-6 y = x^{3} \]

3122

\[ {} -2 y^{\prime \prime }+3 y = x \,{\mathrm e}^{x} \]

3123

\[ {} y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

3124

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime } = x^{2}+8 \]

3125

\[ {} y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} \sin \left (3 x \right ) \]

3126

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-12 y = x +{\mathrm e}^{2 x} \]

3127

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = {\mathrm e}^{4 x} \sin \left (x \right ) \]

3128

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x} \]

3129

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{2 x} \]

3130

\[ {} y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \sin \left (k x \right ) \]

3131

\[ {} y^{\prime \prime }+2 n y^{\prime }+n^{2} y = 5 \cos \left (6 x \right ) \]

3132

\[ {} y^{\prime \prime }+9 y = \left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right ) \]

3133

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \]

3134

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime } = \left (2 x^{2}+x \right ) {\mathrm e}^{-2 x}+5 \cos \left (3 x \right ) \]

3135

\[ {} y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

3136

\[ {} y^{\prime \prime \prime \prime }+4 y = 5 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

3137

\[ {} y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]

3138

\[ {} y^{\prime \prime }+4 y = 12 \cos \left (x \right )^{2} \]

3139

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

3140

\[ {} y^{\prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right ) \]

3141

\[ {} 2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \]

3142

\[ {} y^{\prime \prime }+y = 3 x \sin \left (x \right ) \]

3143

\[ {} 2 y^{\prime \prime }+5 y^{\prime }-3 y = \sin \left (x \right )-8 x \]

3144

\[ {} 8 y^{\prime \prime }-y = x \,{\mathrm e}^{-\frac {x}{2}} \]

3145

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

3146

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} \]

3147

\[ {} y^{\prime \prime }+4 y = x^{2} \]

3148

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{2 x} \]

3149

\[ {} y^{\prime \prime }+y = 4 \sin \left (2 x \right ) \]

3150

\[ {} y^{\prime \prime }+4 y = 2 x -2 \sin \left (2 x \right ) \]

3151

\[ {} -y+y^{\prime \prime } = 3 x +5 \,{\mathrm e}^{x} \]

3152

\[ {} y^{\prime \prime }+9 y = {\mathrm e}^{x}+\sin \left (4 x \right ) \]

3153

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime } = \cos \left (2 x \right ) \]

3154

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = {\mathrm e}^{3 x} \]

3155

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

3156

\[ {} y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

3157

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \]

3158

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

3159

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (x \right ) \]

3160

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

3161

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

3162

\[ {} y^{\prime \prime }+4 y = \tan \left (x \right ) \sec \left (x \right ) \]

3163

\[ {} -2 y+y^{\prime \prime } = \sin \left (2 x \right ) {\mathrm e}^{-x} \]

3164

\[ {} y^{\prime \prime }+9 y = \sec \left (x \right ) \csc \left (x \right ) \]

3165

\[ {} y^{\prime \prime }+9 y = \csc \left (2 x \right ) \]

3166

\[ {} y^{\prime \prime }+y = \tan \left (\frac {x}{3}\right )^{2} \]

3167

\[ {} y^{\prime }+y^{\prime \prime \prime } = \tan \left (x \right ) \]

3168

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \]

3169

\[ {} y^{\prime }+P \left (x \right ) y = Q \left (x \right ) \]

3170

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

3171

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

3172

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = x^{2} \]

3173

\[ {} y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x} \]

3174

\[ {} y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x} \]

3175

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

3176

\[ {} y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x} \]

3177

\[ {} y^{\prime \prime }+2 y = \sin \left (x \right ) \]

3178

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \]

3179

\[ {} y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right ) \]

3180

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

3181

\[ {} y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

3182

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = \sin \left (x \right )-{\mathrm e}^{4 x} \]

3183

\[ {} -4 y+3 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 4 \,{\mathrm e}^{x}+3 \cos \left (2 x \right ) \]

3184

\[ {} y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \]

3185

\[ {} y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right ) \]

3186

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

3187

\[ {} y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x} \]

3188

\[ {} y^{\prime \prime }+4 y = x \,{\mathrm e}^{x} \]

3189

\[ {} y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x} \]

3190

\[ {} y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8 \]

3191

\[ {} y^{\prime \prime \prime }-y = x^{2} \]

3192

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = x^{2} {\mathrm e}^{-x} \]

3193

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

3194

\[ {} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (\sin \left (x \right )-x^{2}\right ) \]

3195

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime } = {\mathrm e}^{2 x} \left (x -3\right ) \]

3196

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = \sin \left (3 x \right )+x \,{\mathrm e}^{x} \]

3197

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x^{2} {\mathrm e}^{2 x} \]

3198

\[ {} y^{\prime \prime \prime }+2 y^{\prime } = x^{2}+\cos \left (x \right ) \]

3199

\[ {} y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }+2 y = \sin \left (2 x \right ) \]

3200

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{3}-\frac {\cos \left (2 x \right )}{2} \]