| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\frac {y}{x} = -x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \cot \left (x \right ) = \csc \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+x^{2} y = x^{3}-x^{2} \arctan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (-x^{2}+1\right ) y^{\prime }+y \left (x^{2}-1\right ) = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\sin \left (x \right ) y = \sin \left (x \right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (-x^{2}+1\right )-x y = a x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{2} y^{\prime }+y^{3} = x -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y \tan \left (x \right ) = y^{4} \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \sqrt {x^{2}-1}+x \sqrt {y^{2}-1}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+{\mathrm e}^{y}\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (3+y\right ) y^{\prime } = x \left (3+2 y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}-3 x^{2} y+5 x y^{2}-7 y^{3}+\left (y^{4}+2 y^{2}-x^{3}+5 x^{2} y-21 x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3}+4 x y+y^{2}+\left (2 x^{2}+2 x y+4 y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 y y^{\prime } x -x^{2}-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+3 x y-y^{2}\right ) y^{\prime }-3 y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+2 x y\right ) y^{\prime }-3 x^{2}+2 x y-y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-2 x y+x^{2}\right ) y^{\prime }+x^{2}-3 x y+2 y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y^{\prime }+2 x^{2}-3 y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3 x +2 y-7\right ) y^{\prime } = 2 x -3 y+6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (6 x -5 y+4\right ) y^{\prime } = 1+2 x -y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (5 x -2 y+7\right ) y^{\prime } = x -3 y+2
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -3 y+4\right ) y^{\prime } = 5 x -7 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -3 y+4\right ) y^{\prime } = 2 x -6 y+7
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (5 x -2 y+7\right ) y^{\prime } = 10 x -4 y+6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x -2 y+5\right ) y^{\prime } = x -y+3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (6 x -4 y+1\right ) y^{\prime } = 3 x -2 y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+2 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e y^{\prime \prime } = -P \left (L -x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e y^{\prime \prime } = P \left (a -y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 x y^{\prime } = \ln \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime }+x y^{\prime \prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y+4 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y = \cos \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y = x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{\prime }+5 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = -\frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime } = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = -a^{2} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \frac {1}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+3 y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x = y^{\prime \prime }+y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x = {y^{\prime }}^{2}+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }-{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} V^{\prime \prime }+\frac {V^{\prime }}{r} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [z^{\prime }\left (x \right )+7 y \left (x \right )-3 z \left (x \right ) = 0, 7 y^{\prime }\left (x \right )+63 y \left (x \right )-36 z \left (x \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [z^{\prime }\left (x \right )+2 y^{\prime }\left (x \right )+3 y \left (x \right ) = 0, y^{\prime }\left (x \right )+3 y \left (x \right )-2 z \left (x \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right )+3 y \left (x \right )+z \left (x \right ) = 0, z^{\prime }\left (x \right )+3 y \left (x \right )+5 z \left (x \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right )+3 y \left (x \right )+2 z \left (x \right ) = 0, z^{\prime }\left (x \right )+2 y \left (x \right )-4 z \left (x \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right )-3 y \left (x \right )-2 z \left (x \right ) = 0, z^{\prime }\left (x \right )+y \left (x \right )-2 z \left (x \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|