6.197 Problems 19601 to 19700

Table 6.393: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

19601

\[ {} 4 x^{2} y^{\prime \prime }-3 y = 0 \]

19602

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

19603

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

19604

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

19605

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

19606

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

19607

\[ {} x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

19608

\[ {} y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0 \]

19609

\[ {} y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

19610

\[ {} 4 y+y^{\prime \prime } = 3 \sin \left (x \right ) \]

19611

\[ {} y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

19612

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

19613

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

19614

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

19615

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

19616

\[ {} y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

19617

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 6 \,{\mathrm e}^{x} \]

19618

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

19619

\[ {} y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

19620

\[ {} y^{\prime \prime }+k^{2} y = \sin \left (b x \right ) \]

19621

\[ {} 4 y+y^{\prime \prime } = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

19622

\[ {} y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

19623

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 2 x \]

19624

\[ {} y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

19625

\[ {} 4 y+y^{\prime \prime } = \tan \left (2 x \right ) \]

19626

\[ {} y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \ln \left (x \right ) \]

19627

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

19628

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

19629

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

19630

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = \frac {1}{1+{\mathrm e}^{-x}} \]

19631

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

19632

\[ {} y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

19633

\[ {} y^{\prime \prime }+y = \cot \left (2 x \right ) \]

19634

\[ {} y^{\prime \prime }+y = x \cos \left (x \right ) \]

19635

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

19636

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right ) \]

19637

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

19638

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

19639

\[ {} \left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2} \]

19640

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2} \]

19641

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = x^{2} {\mathrm e}^{2 x} \]

19642

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

19643

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

19644

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

19645

\[ {} y^{\prime \prime \prime }-y = 0 \]

19646

\[ {} y^{\prime \prime \prime }+y = 0 \]

19647

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

19648

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

19649

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19650

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

19651

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

19652

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

19653

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19654

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

19655

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

19656

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

19657

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

19658

\[ {} y^{\prime \prime \prime \prime } = 0 \]

19659

\[ {} y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

19660

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

19661

\[ {} y^{\prime \prime \prime }-y^{\prime } = 1 \]

19662

\[ {} 3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

19663

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19664

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

19665

\[ {} x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

19666

\[ {} y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \]

19667

\[ {} -y+y^{\prime \prime } = x^{2} {\mathrm e}^{2 x} \]

19668

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 10 x^{3} {\mathrm e}^{-2 x} \]

19669

\[ {} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \]

19670

\[ {} -y+y^{\prime \prime } = {\mathrm e}^{-x} \]

19671

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 \,{\mathrm e}^{5 x} \]

19672

\[ {} y^{\prime \prime }-y^{\prime }+y = x^{3}-3 x^{2}+1 \]

19673

\[ {} y^{\prime \prime \prime }-2 y^{\prime }+y = 2 x^{3}-3 x^{2}+4 x +5 \]

19674

\[ {} 4 y^{\prime \prime }+y = x^{4} \]

19675

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime } = x^{2} \]

19676

\[ {} y^{\left (6\right )}-y = x^{10} \]

19677

\[ {} y^{\prime \prime }+y^{\prime }-y = -x^{4}+3 x \]

19678

\[ {} y^{\prime \prime }+y = x^{4} \]

19679

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = 12 x -2 \]

19680

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 9 x^{2}-2 x +1 \]

19681

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} {\mathrm e}^{2 x} \]

19682

\[ {} 12 y-7 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right ) \]

19683

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \]

19684

\[ {} y^{\prime \prime \prime }-8 y = 16 x^{2} \]

19685

\[ {} y^{\prime \prime \prime \prime }-y = -x^{3}+1 \]

19686

\[ {} y^{\prime \prime \prime }-\frac {y^{\prime }}{4} = x \]

19687

\[ {} y^{\prime \prime \prime \prime } = \frac {1}{x^{3}} \]

19688

\[ {} y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime } = 1+x \]

19689

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime } = x \]

19690

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x} \]

19691

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x} \]

19692

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{2 x} \sin \left (x \right ) \]

19693

\[ {} y^{\prime } = 2 x y \]

19694

\[ {} y^{\prime }+y = 1 \]

19695

\[ {} x y^{\prime } = y \]

19696

\[ {} x^{2} y^{\prime } = y \]

19697

\[ {} y^{\prime } = 1+y^{2} \]

19698

\[ {} y^{\prime } = x -y \]

19699

\[ {} -2 y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

19700

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]