| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 4 x^{2} y^{\prime \prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 3 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 2 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime } = 12 x -10
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 6 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 10 x^{4}+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+k^{2} y = \sin \left (b x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = \tan \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \sec \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = \frac {1}{1+{\mathrm e}^{-x}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \cot \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \cot \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = x^{2} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = \sin \left (x \right )+24
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = x^{2} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 10 x^{3} {\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 6 \,{\mathrm e}^{5 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }+y = x^{3}-3 x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime }+y = 2 x^{3}-3 x^{2}+4 x +5
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }+y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-y^{\prime \prime \prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-y = x^{10}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-y = -x^{4}+3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = 12 x -2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime } = 9 x^{2}-2 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 12 y-7 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-8 y = 16 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = -x^{3}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-\frac {y^{\prime }}{4} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = \frac {1}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime } = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+2 y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{2 x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime } = y
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|