| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }+y = \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = \csc \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 12 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -4 y^{\prime }+y^{\prime \prime \prime } = 30 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+36 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-12 y^{\prime }+36 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-36 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-9 y^{\prime }+14 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 16 y-7 x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{\prime \prime } = \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-8 y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-30 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 16 y^{\prime \prime }-8 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }-7 y^{\prime }+3 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+20 y^{\prime }+100 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime } = 3 y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+36 y = 6 \sec \left (6 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 \sin \left (3 x \right ) x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+y^{\prime } = t^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y+y^{\prime } = \operatorname {Heaviside}\left (t -4\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = t^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+6 y = 7
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }+y^{\prime }+t y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 27 t^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-8 y^{\prime }+17 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = t^{2} {\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+13 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+8 y^{\prime }+17 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = {\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|