6.169 Problems 16801 to 16900

Table 6.337: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16801

\[ {} y^{\prime \prime }+y = \cot \left (x \right ) \]

16802

\[ {} 4 y+y^{\prime \prime } = \csc \left (2 x \right ) \]

16803

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x} \]

16804

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \]

16805

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

16806

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

16807

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 12 x^{3} \]

16808

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \]

16809

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \ln \left (x \right ) \]

16810

\[ {} x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2} \]

16811

\[ {} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

16812

\[ {} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

16813

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

16814

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x} \]

16815

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x} \]

16816

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = 30 \,{\mathrm e}^{3 x} \]

16817

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

16818

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}} \]

16819

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

16820

\[ {} y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

16821

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right ) \]

16822

\[ {} y^{\prime \prime }+36 y = 0 \]

16823

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

16824

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

16825

\[ {} y^{\prime \prime }-36 y = 0 \]

16826

\[ {} y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

16827

\[ {} 16 y-7 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

16828

\[ {} y^{\prime }+2 x y^{\prime \prime } = \sqrt {x} \]

16829

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

16830

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

16831

\[ {} y^{\prime \prime }+3 y = 0 \]

16832

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

16833

\[ {} x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

16834

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

16835

\[ {} x^{2} y^{\prime \prime }-6 y = 0 \]

16836

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

16837

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

16838

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

16839

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

16840

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \]

16841

\[ {} y^{\prime \prime }+y^{\prime }-30 y = 0 \]

16842

\[ {} 16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

16843

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

16844

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

16845

\[ {} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

16846

\[ {} 9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

16847

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

16848

\[ {} 2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

16849

\[ {} y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

16850

\[ {} x y^{\prime \prime } = 3 y^{\prime } \]

16851

\[ {} y^{\prime \prime }-5 y^{\prime } = 0 \]

16852

\[ {} y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

16853

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

16854

\[ {} y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]

16855

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]

16856

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \]

16857

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

16858

\[ {} y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

16859

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \]

16860

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

16861

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \]

16862

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

16863

\[ {} x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

16864

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \]

16865

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

16866

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]

16867

\[ {} 3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 \sin \left (3 x \right ) x \]

16868

\[ {} y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

16869

\[ {} y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

16870

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \]

16871

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

16872

\[ {} y^{\prime }+4 y = 0 \]

16873

\[ {} -2 y+y^{\prime } = t^{3} \]

16874

\[ {} 3 y+y^{\prime } = \operatorname {Heaviside}\left (t -4\right ) \]

16875

\[ {} y^{\prime \prime }-4 y = t^{3} \]

16876

\[ {} y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]

16877

\[ {} y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]

16878

\[ {} y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \]

16879

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \]

16880

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \]

16881

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 7 \]

16882

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]

16883

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \]

16884

\[ {} y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]

16885

\[ {} t y^{\prime \prime }+y^{\prime }+t y = 0 \]

16886

\[ {} y^{\prime \prime }-9 y = 0 \]

16887

\[ {} y^{\prime \prime }+9 y = 27 t^{3} \]

16888

\[ {} y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]

16889

\[ {} y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]

16890

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = t^{2} {\mathrm e}^{3 t} \]

16891

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

16892

\[ {} y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]

16893

\[ {} y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]

16894

\[ {} y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]

16895

\[ {} y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]

16896

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]

16897

\[ {} y^{\prime \prime }+4 y = 1 \]

16898

\[ {} y^{\prime \prime }+4 y = t \]

16899

\[ {} y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]

16900

\[ {} y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]