6.163 Problems 16201 to 16300

Table 6.325: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16201

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t} \]

16202

\[ {} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

16203

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]

16204

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]

16205

\[ {} y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]

16206

\[ {} y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]

16207

\[ {} y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]

16208

\[ {} y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]

16209

\[ {} y^{\prime \prime }+2 y = -3 \]

16210

\[ {} y^{\prime \prime }+4 y = {\mathrm e}^{t} \]

16211

\[ {} y^{\prime \prime }+9 y = 6 \]

16212

\[ {} y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]

16213

\[ {} y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]

16214

\[ {} y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]

16215

\[ {} y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]

16216

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]

16217

\[ {} y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]

16218

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]

16219

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]

16220

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]

16221

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]

16222

\[ {} y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]

16223

\[ {} y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]

16224

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]

16225

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]

16226

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]

16227

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]

16228

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

16229

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]

16230

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]

16231

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]

16232

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

16233

\[ {} y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]

16234

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

16235

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]

16236

\[ {} y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

16237

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]

16238

\[ {} y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]

16239

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]

16240

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]

16241

\[ {} y^{\prime \prime }+9 y = \cos \left (t \right ) \]

16242

\[ {} y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]

16243

\[ {} y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]

16244

\[ {} y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]

16245

\[ {} y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]

16246

\[ {} y^{\prime \prime }+4 y = 8 \]

16247

\[ {} y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]

16248

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]

16249

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (t -4\right ) \]

16250

\[ {} y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]

16251

\[ {} y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \]

16252

\[ {} y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]

16253

\[ {} y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]

16254

\[ {} y^{\prime \prime }+3 y = 5 \delta \left (t -2\right ) \]

16255

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -3\right ) \]

16256

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = -2 \delta \left (t -2\right ) \]

16257

\[ {} y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (t -1\right )-3 \delta \left (t -4\right ) \]

16258

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]

16259

\[ {} y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]

16260

\[ {} y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \]

16261

\[ {} y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]

16262

\[ {} y^{\prime \prime }+16 y = 0 \]

16263

\[ {} y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]

16264

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16265

\[ {} y^{\prime \prime }+16 y = t \]

16266

\[ {} y^{\prime } = 3-\sin \left (x \right ) \]

16267

\[ {} y^{\prime } = 3-\sin \left (y\right ) \]

16268

\[ {} y^{\prime }+4 y = {\mathrm e}^{2 x} \]

16269

\[ {} x y^{\prime } = \arcsin \left (x^{2}\right ) \]

16270

\[ {} y y^{\prime } = 2 x \]

16271

\[ {} y^{\prime \prime } = \frac {1+x}{x -1} \]

16272

\[ {} x^{2} y^{\prime \prime } = 1 \]

16273

\[ {} y^{2} y^{\prime \prime } = 8 x^{2} \]

16274

\[ {} y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]

16275

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime } = 0 \]

16276

\[ {} y^{\prime } = 4 x^{3} \]

16277

\[ {} y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

16278

\[ {} x y^{\prime }+\sqrt {x} = 2 \]

16279

\[ {} \sqrt {x +4}\, y^{\prime } = 1 \]

16280

\[ {} y^{\prime } = x \cos \left (x^{2}\right ) \]

16281

\[ {} y^{\prime } = x \cos \left (x \right ) \]

16282

\[ {} x = \left (x^{2}-9\right ) y^{\prime } \]

16283

\[ {} 1 = \left (x^{2}-9\right ) y^{\prime } \]

16284

\[ {} 1 = x^{2}-9 y^{\prime } \]

16285

\[ {} y^{\prime \prime } = \sin \left (2 x \right ) \]

16286

\[ {} y^{\prime \prime }-3 = x \]

16287

\[ {} y^{\prime \prime \prime \prime } = 1 \]

16288

\[ {} y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]

16289

\[ {} \left (x +6\right )^{{1}/{3}} y^{\prime } = 1 \]

16290

\[ {} y^{\prime } = \frac {x -1}{1+x} \]

16291

\[ {} x y^{\prime }+2 = \sqrt {x} \]

16292

\[ {} \cos \left (x \right ) y^{\prime }-\sin \left (x \right ) = 0 \]

16293

\[ {} \left (x^{2}+1\right ) y^{\prime } = 1 \]

16294

\[ {} x y^{\prime \prime }+2 = \sqrt {x} \]

16295

\[ {} y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

16296

\[ {} y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

16297

\[ {} y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

16298

\[ {} y^{\prime } = 3 \sqrt {x +3} \]

16299

\[ {} y^{\prime } = 3 \sqrt {x +3} \]

16300

\[ {} y^{\prime } = 3 \sqrt {x +3} \]