6.139 Problems 13801 to 13900

Table 6.277: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

13801

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

13802

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y = 0 \]

13803

\[ {} y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0 \]

13804

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

13805

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

13806

\[ {} y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0 \]

13807

\[ {} y^{\prime \prime }+\left (x^{2} a +b \right ) y^{\prime }+c \left (x^{2} a +b -c \right ) y = 0 \]

13808

\[ {} y^{\prime \prime }+\left (x^{2} a +2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0 \]

13809

\[ {} y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+x^{2} a +b +2 x \right ) y = 0 \]

13810

\[ {} y^{\prime \prime }+\left (x^{2} a +b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

13811

\[ {} y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0 \]

13812

\[ {} y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0 \]

13813

\[ {} y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (a \,x^{3} b +a c \,x^{2}+b \right ) y = 0 \]

13814

\[ {} y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a \,x^{3} b -x^{2} a +b^{2}\right ) y = 0 \]

13815

\[ {} y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 x^{2} a +b \right ) y = 0 \]

13816

\[ {} y^{\prime \prime }+\left (a \,x^{3} b +b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0 \]

13817

\[ {} y^{\prime \prime }+a \,x^{n} y^{\prime } = 0 \]

13818

\[ {} y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y = 0 \]

13819

\[ {} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

13820

\[ {} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y = 0 \]

13821

\[ {} y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{m +n}+b \,x^{2 m}+m \,x^{m -1}\right ) y = 0 \]

13822

\[ {} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+a n \,x^{n -1}+c \,x^{m -1}\right ) y = 0 \]

13823

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y = 0 \]

13824

\[ {} y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y = 0 \]

13825

\[ {} y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y = 0 \]

13826

\[ {} y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y = 0 \]

13827

\[ {} y^{\prime \prime }+x^{n} \left (x^{2} a +\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y = 0 \]

13828

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }-\left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0 \]

13829

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

13830

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (1+m \right ) x^{m -1}\right ) y = 0 \]

13831

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y = 0 \]

13832

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a b \,x^{m +n}+b \left (1+m \right ) x^{m -1}-a \,x^{n -1}\right ) y = 0 \]

13833

\[ {} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a b \,x^{m +n}+b c \,x^{m}+a n \,x^{n -1}\right ) y = 0 \]

13834

\[ {} x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

13835

\[ {} b y+a y^{\prime }+x y^{\prime \prime } = 0 \]

13836

\[ {} b x y+a y^{\prime }+x y^{\prime \prime } = 0 \]

13837

\[ {} x y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

13838

\[ {} x y^{\prime \prime }+n y^{\prime }+b \,x^{-2 n +1} y = 0 \]

13839

\[ {} x y^{\prime \prime }+\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{-1+2 n} y = 0 \]

13840

\[ {} x y^{\prime \prime }+a y^{\prime }+b \,x^{n} y = 0 \]

13841

\[ {} x y^{\prime \prime }+a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y = 0 \]

13842

\[ {} x y^{\prime \prime }+a x y^{\prime }+a y = 0 \]

13843

\[ {} x y^{\prime \prime }+\left (-x +b \right ) y^{\prime }-a y = 0 \]

13844

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y = 0 \]

13845

\[ {} x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0 \]

13846

\[ {} \left (a b x +a n +b m \right ) y+\left (m +n +x \left (a +b \right )\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

13847

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

13848

\[ {} x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0 \]

13849

\[ {} x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y = 0 \]

13850

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0 \]

13851

\[ {} x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y = 0 \]

13852

\[ {} x y^{\prime \prime }+\left (a b \,x^{2}+b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y = 0 \]

13853

\[ {} x y^{\prime \prime }+\left (x^{2} a +b x \right ) y^{\prime }-\left (a c \,x^{2}+\left (b c +c^{2}+a \right ) x +b +2 c \right ) y = 0 \]

13854

\[ {} x y^{\prime \prime }+\left (x^{2} a +b x +2\right ) y^{\prime }+b y = 0 \]

13855

\[ {} x y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y = 0 \]

13856

\[ {} x y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (c -1\right ) \left (a x +b \right ) y = 0 \]

13857

\[ {} x y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y = 0 \]

13858

\[ {} x y^{\prime \prime }+\left (x^{2} a +b x +2\right ) y^{\prime }+\left (c \,x^{2}+d x +b \right ) y = 0 \]

13859

\[ {} x y^{\prime \prime }+\left (a \,x^{3}+b \right ) y^{\prime }+a \left (b -1\right ) x^{2} y = 0 \]

13860

\[ {} x y^{\prime \prime }+\left (x^{2} a +b \right ) x y^{\prime }+\left (3 x^{2} a +b \right ) y = 0 \]

13861

\[ {} x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y = 0 \]

13862

\[ {} x y^{\prime \prime }+\left (a \,x^{3} b +b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y = 0 \]

13863

\[ {} x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime }+\left (d -1\right ) \left (x^{2} a +b x +c \right ) y = 0 \]

13864

\[ {} x y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}-b^{2} x +2 b \right ) y = 0 \]

13865

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+2\right ) y^{\prime }+a \,x^{n -1} y = 0 \]

13866

\[ {} x y^{\prime \prime }+\left (x^{n}+1-n \right ) y^{\prime }+b \,x^{-1+2 n} y = 0 \]

13867

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a n \,x^{n -1} y = 0 \]

13868

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b -1\right ) x^{n -1} y = 0 \]

13869

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b +n -1\right ) x^{n -1} y = 0 \]

13870

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y = 0 \]

13871

\[ {} x y^{\prime \prime }+\left (a b \,x^{n}+b -3 n +1\right ) y^{\prime }+a^{2} n \left (b -n \right ) x^{-1+2 n} y = 0 \]

13872

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{-1+2 n}+d \,x^{n -1}\right ) y = 0 \]

13873

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{n -2} y = 0 \]

13874

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b x \right ) y^{\prime }+\left (a b \,x^{n}+a n \,x^{n -1}-b \right ) y = 0 \]

13875

\[ {} x y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+a x -1\right ) y^{\prime }+a^{2} b \,x^{n} y = 0 \]

13876

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (c -1\right ) \left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0 \]

13877

\[ {} x y^{\prime \prime }+\left (a b \,x^{m +n}+a n \,x^{n}+b \,x^{m}+1-2 n \right ) y^{\prime }+a^{2} b n \,x^{2 n +m -1} y = 0 \]

13878

\[ {} \left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+b y = 0 \]

13879

\[ {} \left (a_{1} x +a_{0} \right ) y^{\prime \prime }+\left (b_{1} x +b_{0} \right ) y^{\prime }-m b_{1} y = 0 \]

13880

\[ {} \left (a x +b \right ) y^{\prime \prime }+s \left (c x +d \right ) y^{\prime }-s^{2} \left (\left (a +c \right ) x +b +d \right ) y = 0 \]

13881

\[ {} \left (a_{2} x +b_{2} \right ) y^{\prime \prime }+\left (a_{1} x +b_{1} \right ) y^{\prime }+\left (a_{0} x +b_{0} \right ) y = 0 \]

13882

\[ {} \left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

13883

\[ {} a y+x^{2} y^{\prime \prime } = 0 \]

13884

\[ {} x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

13885

\[ {} x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-n \left (n +1\right )\right ) y = 0 \]

13886

\[ {} -\left (n \left (n +1\right )+a^{2} x^{2}\right ) y+x^{2} y^{\prime \prime } = 0 \]

13887

\[ {} x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y = 0 \]

13888

\[ {} x^{2} y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y = 0 \]

13889

\[ {} x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y = 0 \]

13890

\[ {} x^{2} y^{\prime \prime }-\left (x^{4} a^{2}+a \left (2 b -1\right ) x^{2}+b \left (b +1\right )\right ) y = 0 \]

13891

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y = 0 \]

13892

\[ {} x^{2} y^{\prime \prime }-\left (a^{2} x^{2 n}+a \left (2 b +n -1\right ) x^{n}+b \left (b -1\right )\right ) y = 0 \]

13893

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n}+c \right ) y = 0 \]

13894

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{3 n}+b \,x^{2 n}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0 \]

13895

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2 n} \left (b \,x^{n}+c \right )^{m}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0 \]

13896

\[ {} x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

13897

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

13898

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

13899

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = 0 \]

13900

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (\nu ^{2}+x^{2}\right ) y = 0 \]