6.116 Problems 11501 to 11600

Table 6.231: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

11501

\[ {} \sqrt {x^{2}-1}\, y^{\prime }-\sqrt {y^{2}-1} = 0 \]

11502

\[ {} y^{\prime } \sqrt {-x^{2}+1}-y \sqrt {y^{2}-1} = 0 \]

11503

\[ {} y^{\prime } \sqrt {a^{2}+x^{2}}+y-\sqrt {a^{2}+x^{2}}+x = 0 \]

11504

\[ {} x \ln \left (x \right ) y^{\prime }+y-a x \left (\ln \left (x \right )+1\right ) = 0 \]

11505

\[ {} x \ln \left (x \right ) y^{\prime }-y^{2} \ln \left (x \right )-\left (2 \ln \left (x \right )^{2}+1\right ) y-\ln \left (x \right )^{3} = 0 \]

11506

\[ {} y^{\prime } \sin \left (x \right )-y^{2} \sin \left (x \right )^{2}+\left (\cos \left (x \right )-3 \sin \left (x \right )\right ) y+4 = 0 \]

11507

\[ {} \cos \left (x \right ) y^{\prime }+y+\left (\sin \left (x \right )+1\right ) \cos \left (x \right ) = 0 \]

11508

\[ {} \cos \left (x \right ) y^{\prime }-y^{4}-\sin \left (x \right ) y = 0 \]

11509

\[ {} \sin \left (x \right ) \cos \left (x \right ) y^{\prime }-y-\sin \left (x \right )^{3} = 0 \]

11510

\[ {} y^{\prime } \sin \left (2 x \right )+\sin \left (2 y\right ) = 0 \]

11511

\[ {} \left (a \sin \left (x \right )^{2}+b \right ) y^{\prime }+a y \sin \left (2 x \right )+A x \left (a \sin \left (x \right )^{2}+c \right ) = 0 \]

11512

\[ {} 2 f \left (x \right ) y^{\prime }+2 f \left (x \right ) y^{2}-f^{\prime }\left (x \right ) y-2 f \left (x \right )^{2} = 0 \]

11513

\[ {} y y^{\prime }+x^{3}+y = 0 \]

11514

\[ {} y y^{\prime }+a y+x = 0 \]

11515

\[ {} y y^{\prime }+a y+\frac {\left (a^{2}-1\right ) x}{4}+b \,x^{n} = 0 \]

11516

\[ {} y y^{\prime }+a y+b \,{\mathrm e}^{x}-2 a = 0 \]

11517

\[ {} y y^{\prime }+4 x \left (1+x \right )+y^{2} = 0 \]

11518

\[ {} y y^{\prime }+a y^{2}-b \cos \left (x +c \right ) = 0 \]

11519

\[ {} y y^{\prime }-\sqrt {a y^{2}+b} = 0 \]

11520

\[ {} y y^{\prime }+x y^{2}-4 x = 0 \]

11521

\[ {} y y^{\prime }-x \,{\mathrm e}^{\frac {x}{y}} = 0 \]

11522

\[ {} y y^{\prime }+x +f \left (x^{2}+y^{2}\right ) g \left (x \right ) = 0 \]

11523

\[ {} \left (1+y\right ) y^{\prime }-y-x = 0 \]

11524

\[ {} \left (x +y-1\right ) y^{\prime }-y+2 x +3 = 0 \]

11525

\[ {} \left (y+2 x -2\right ) y^{\prime }-y+x +1 = 0 \]

11526

\[ {} \left (1-2 x +y\right ) y^{\prime }+y+x = 0 \]

11527

\[ {} \left (y-x^{2}\right ) y^{\prime }-x = 0 \]

11528

\[ {} \left (y-x^{2}\right ) y^{\prime }+4 x y = 0 \]

11529

\[ {} 2 y y^{\prime }-x y^{2}-x^{3} = 0 \]

11530

\[ {} \left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0 \]

11531

\[ {} \left (2 y+x +7\right ) y^{\prime }-y+2 x +4 = 0 \]

11532

\[ {} \left (-x +2 y\right ) y^{\prime }-y-2 x = 0 \]

11533

\[ {} \left (2 y-6 x \right ) y^{\prime }-y+3 x +2 = 0 \]

11534

\[ {} \left (3+2 x +4 y\right ) y^{\prime }-2 y-x -1 = 0 \]

11535

\[ {} \left (4 y-2 x -3\right ) y^{\prime }+2 y-x -1 = 0 \]

11536

\[ {} \left (4 y-3 x -5\right ) y^{\prime }-3 y+7 x +2 = 0 \]

11537

\[ {} \left (4 y+11 x -11\right ) y^{\prime }-25 y-8 x +62 = 0 \]

11538

\[ {} \left (12 y-5 x -8\right ) y^{\prime }-5 y+2 x +3 = 0 \]

11539

\[ {} a y y^{\prime }+b y^{2}+f \left (x \right ) = 0 \]

11540

\[ {} \left (a y+b x +c \right ) y^{\prime }+\alpha y+\beta x +\gamma = 0 \]

11541

\[ {} y y^{\prime } x +x^{2}+y^{2} = 0 \]

11542

\[ {} y y^{\prime } x -y^{2}+a \,x^{3} \cos \left (x \right ) = 0 \]

11543

\[ {} y y^{\prime } x -y^{2}+x y+x^{3}-2 x^{2} = 0 \]

11544

\[ {} \left (x y+a \right ) y^{\prime }+b y = 0 \]

11545

\[ {} x \left (4+y\right ) y^{\prime }-y^{2}-2 y-2 x = 0 \]

11546

\[ {} x \left (a +y\right ) y^{\prime }+b y+c x = 0 \]

11547

\[ {} \left (a +x \left (x +y\right )\right ) y^{\prime }-y \left (x +y\right )-b = 0 \]

11548

\[ {} y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \]

11549

\[ {} 2 y y^{\prime } x -y^{2}+a x = 0 \]

11550

\[ {} 2 y y^{\prime } x -y^{2}+x^{2} a = 0 \]

11551

\[ {} 2 y y^{\prime } x +2 y^{2}+1 = 0 \]

11552

\[ {} x \left (x +2 y-1\right ) y^{\prime }-\left (2 x +y+1\right ) y = 0 \]

11553

\[ {} y \left (2 x -y-1\right )+x \left (2 y-x -1\right ) y^{\prime } = 0 \]

11554

\[ {} \left (2 x y+4 x^{3}\right ) y^{\prime }+y^{2}+112 x^{2} y = 0 \]

11555

\[ {} x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

11556

\[ {} \left (2+3 x \right ) \left (y-2 x -1\right ) y^{\prime }-y^{2}+x y-7 x^{2}-9 x -3 = 0 \]

11557

\[ {} \left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2} = 0 \]

11558

\[ {} \left (a x y+b \,x^{n}\right ) y^{\prime }+\alpha y^{3}+\beta y^{2} = 0 \]

11559

\[ {} \left (B x y+A \,x^{2}+a x +b y+c \right ) y^{\prime }-B g \left (x \right )^{2}+A x y+x \alpha +\beta y+\gamma = 0 \]

11560

\[ {} \left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0 \]

11561

\[ {} \left (x^{2} y-1\right ) y^{\prime }-x y^{2}+1 = 0 \]

11562

\[ {} \left (x^{2} y-1\right ) y^{\prime }+8 x y^{2}-8 = 0 \]

11563

\[ {} x \left (x y-2\right ) y^{\prime }+x^{2} y^{3}+x y^{2}-2 y = 0 \]

11564

\[ {} x \left (x y-3\right ) y^{\prime }+x y^{2}-y = 0 \]

11565

\[ {} x^{2} \left (y-1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

11566

\[ {} x \left (x y+x^{4}-1\right ) y^{\prime }-y \left (x y-x^{4}-1\right ) = 0 \]

11567

\[ {} 2 x^{2} y y^{\prime }+y^{2}-2 x^{3}-x^{2} = 0 \]

11568

\[ {} 2 x^{2} y y^{\prime }-y^{2}-x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

11569

\[ {} \left (x +2 x^{2} y\right ) y^{\prime }-x^{2} y^{3}+2 x y^{2}+y = 0 \]

11570

\[ {} \left (2 x^{2} y-x \right ) y^{\prime }-2 x y^{2}-y = 0 \]

11571

\[ {} \left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3} = 0 \]

11572

\[ {} 2 x^{3}+y y^{\prime }+3 x^{2} y^{2}+7 = 0 \]

11573

\[ {} 2 x \left (x^{3} y+1\right ) y^{\prime }+\left (3 x^{3} y-1\right ) y = 0 \]

11574

\[ {} \left (x^{n \left (n +1\right )} y-1\right ) y^{\prime }+2 \left (n +1\right )^{2} x^{n -1} \left (x^{n^{2}} y^{2}-1\right ) = 0 \]

11575

\[ {} \left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime }-a \sqrt {\left (1+y^{2}\right )^{3}} = 0 \]

11576

\[ {} y y^{\prime } \sin \left (x \right )^{2}+y^{2} \cos \left (x \right ) \sin \left (x \right )-1 = 0 \]

11577

\[ {} f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right ) = 0 \]

11578

\[ {} \left (-x +y^{2}\right ) y^{\prime }-y+x^{2} = 0 \]

11579

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \]

11580

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime }-y^{2} = 0 \]

11581

\[ {} 2 x y+\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

11582

\[ {} 2 x y+x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

11583

\[ {} \left (x^{2}+y^{2}+x \right ) y^{\prime }-y = 0 \]

11584

\[ {} \left (-x^{2}+y^{2}\right ) y^{\prime }+2 x y = 0 \]

11585

\[ {} \left (x^{4}+y^{2}\right ) y^{\prime }-4 x^{3} y = 0 \]

11586

\[ {} \left (y^{2}+4 \sin \left (x \right )\right ) y^{\prime }-\cos \left (x \right ) = 0 \]

11587

\[ {} \left (x +2 y+y^{2}\right ) y^{\prime }+y \left (1+y\right )+\left (x +y\right )^{2} y^{2} = 0 \]

11588

\[ {} \left (x +y\right )^{2} y^{\prime }-a^{2} = 0 \]

11589

\[ {} x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

11590

\[ {} \left (y+3 x -1\right )^{2} y^{\prime }-\left (2 y-1\right ) \left (4 y+6 x -3\right ) = 0 \]

11591

\[ {} 3 \left (-x^{2}+y^{2}\right ) y^{\prime }+2 y^{3}-6 x y \left (1+x \right )-3 \,{\mathrm e}^{x} = 0 \]

11592

\[ {} \left (x^{2}+4 y^{2}\right ) y^{\prime }-x y = 0 \]

11593

\[ {} \left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0 \]

11594

\[ {} \left (1-3 x +2 y\right )^{2} y^{\prime }-\left (3 y-2 x -4\right )^{2} = 0 \]

11595

\[ {} \left (2 y-4 x +1\right )^{2} y^{\prime }-\left (y-2 x \right )^{2} = 0 \]

11596

\[ {} \left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }-3 x y^{2}+x = 0 \]

11597

\[ {} \left (6 y-x \right )^{2} y^{\prime }-6 y^{2}+2 x y+a = 0 \]

11598

\[ {} \left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

11599

\[ {} \left (b \left (\beta y+x \alpha \right )^{2}-\beta \left (a x +b y\right )\right ) y^{\prime }+a \left (\beta y+x \alpha \right )^{2}-\alpha \left (a x +b y\right ) = 0 \]

11600

\[ {} \left (a y+b x +c \right )^{2} y^{\prime }+\left (\alpha y+\beta x +\gamma \right )^{2} = 0 \]