| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 2 y y^{\prime } x +\left (1+x \right ) y^{2} = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (1+x \right )-1-y = \left (1+x \right ) \sqrt {1+y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{y} \left (1+y^{\prime }\right ) = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -y\right )^{2} y^{\prime } = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\left (1+y^{2} {\mathrm e}^{2 x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y+y^{2}+x^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \left (x^{2}+2 y-1\right )^{{2}/{3}}-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = x^{2} \left ({\mathrm e}^{x}+1\right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-x y \ln \left (x \right )-2 x \ln \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+a y = k \,{\mathrm e}^{b x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (x +y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+8 x^{3} y^{3}+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x y \sqrt {x^{2}-y^{2}}+x \right ) y^{\prime } = y-x^{2} \sqrt {x^{2}-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+a y = b \sin \left (k x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y^{2}+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y^{2}+a \sin \left (x \right )\right ) y^{\prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = x +y+{\mathrm e}^{\frac {y}{x}} x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y \left (\ln \left (x y\right )-1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime }-y^{2}-x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+a y+b \,x^{n} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y-\sin \left (\frac {y}{x}\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+y^{2}+1\right ) y^{\prime }+2 x y+x^{2}+3 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (x \right ) y^{\prime }+y+\left (\sin \left (x \right )+1\right ) \cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-y+x^{2}\right ) y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-y+x^{2}\right ) y^{\prime }-4 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x +x^{2}+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } x +3 x^{2}-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x y-1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x y^{2} y^{\prime }+y^{3}-2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }-x y+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y^{\prime \prime }-11 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-a^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 k y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y^{\prime \prime \prime }+y^{\left (5\right )} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = x^{2}+2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 4 x \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = \sin \left (2 x \right ) x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = x^{2} {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|