6.61 Problems 6001 to 6100

Table 6.121: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

6001

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2-x \]

6002

\[ {} \left (a^{2} x^{2}+2\right ) y-2 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6003

\[ {} -\left (n \left (n +1\right )-a^{2} x^{2}\right ) y+2 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6004

\[ {} \left (b \,x^{2}+a \right ) y+2 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6005

\[ {} a y-2 \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6006

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

6007

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x \]

6008

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = a -x +x \ln \left (x \right ) \]

6009

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

6010

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 5 x \]

6011

\[ {} -5 y-3 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6012

\[ {} -5 y-3 x y^{\prime }+x^{2} y^{\prime \prime } = x^{2} \ln \left (x \right ) \]

6013

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

6014

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

6015

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (1+x \right ) \]

6016

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

6017

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{2} \left (x^{2}-1\right ) \]

6018

\[ {} \left (-x^{2}+2\right ) y+4 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6019

\[ {} \left (x^{2}+6\right ) y+4 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6020

\[ {} 13 y+5 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6021

\[ {} 16 y-7 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6022

\[ {} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6023

\[ {} \operatorname {a2} y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6024

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6025

\[ {} \left (\operatorname {b2} \,x^{2}+\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6026

\[ {} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6027

\[ {} \left (c \,x^{3}+b \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6028

\[ {} x^{2} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6029

\[ {} \left (b +c \,x^{2 k}\right ) y+a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6030

\[ {} c y+\left (b x +a \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6031

\[ {} a \left (a +1\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6032

\[ {} a \left (a +1\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime } = {\mathrm e}^{x} x^{2+a} \]

6033

\[ {} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6034

\[ {} \left (b x +a \right ) y+2 a x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6035

\[ {} -2 x^{2} y-x^{2} y^{\prime }+x^{2} y^{\prime \prime } = 1+x +2 x^{2} \ln \left (x \right ) \]

6036

\[ {} \left (b \,x^{2}+a \right ) y+x^{2} y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6037

\[ {} -y-y^{\prime } \left (-x^{2}+1\right )+x^{2} y^{\prime \prime } = 0 \]

6038

\[ {} -\left (1-x \right ) y+x \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6039

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

6040

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

6041

\[ {} -\left (2+3 x \right ) y+\left (2-x \right ) x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6042

\[ {} -y+x \left (x +3\right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6043

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6044

\[ {} -2 y+a \,x^{2} y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6045

\[ {} \left (3 a x +5\right ) y-x \left (a x +5\right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6046

\[ {} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6047

\[ {} -\left (-x^{2}+2\right ) y+x^{3} y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6048

\[ {} -\left (x^{2}+1\right ) y+x \left (-x^{2}+1\right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6049

\[ {} \left (4 x^{4}+2 x^{2}+1\right ) y+4 x^{3} y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6050

\[ {} \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+\operatorname {c1} \,x^{2 k}\right ) y+x \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6051

\[ {} a y+2 x^{2} \cot \left (x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6052

\[ {} -\left (a -x \cot \left (x \right )\right ) y+x \left (1+2 x \cot \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6053

\[ {} a y-2 x^{2} \tan \left (x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6054

\[ {} -\left (a +x \tan \left (x \right )\right ) y+x \left (1-2 x \tan \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6055

\[ {} y \left (\operatorname {a2} +\operatorname {b2} \,x^{k}+\operatorname {c2} \,x^{2 k}+\left (-1+\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) f \left (x \right )+f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+2 f \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

6056

\[ {} -2 y+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6057

\[ {} a -x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6058

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = x \]

6059

\[ {} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6060

\[ {} -y+x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6061

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6062

\[ {} -y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6063

\[ {} -y+x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = x \left (-x^{2}+1\right )^{{3}/{2}} \]

6064

\[ {} 3 y+x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6065

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6066

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6067

\[ {} n^{2} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6068

\[ {} a^{2} y+x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6069

\[ {} a^{2} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6070

\[ {} \left (b \,x^{2}+a \right ) y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6071

\[ {} -2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6072

\[ {} a -2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6073

\[ {} -2 y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6074

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6075

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (-x^{2}+1\right )^{2} \]

6076

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6077

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = \frac {2 \left (-n -1\right ) x \operatorname {LegendreP}\left (n , x\right )+2 \left (n +1\right ) \operatorname {LegendreP}\left (n +1, x\right )}{x^{2}-1} \]

6078

\[ {} -p \left (p +1\right ) y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6079

\[ {} p \left (p +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6080

\[ {} n \left (n +2\right ) y-3 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6081

\[ {} -a y-3 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6082

\[ {} 2 y+4 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = -2 x +2 \cos \left (x \right ) \]

6083

\[ {} 6 y-4 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6084

\[ {} -\left (x^{2}+1\right ) y-4 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6085

\[ {} -4 y-6 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6086

\[ {} n \left (1+a +b +n \right ) y+\left (-a +b -\left (2+a +b \right ) x \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6087

\[ {} p \left (2 k +p \right ) y-\left (1+2 k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6088

\[ {} p \left (1+2 k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6089

\[ {} -\left (k -p \right ) \left (1+k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6090

\[ {} \left (1-a \right ) a y-2 a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6091

\[ {} -\left (2-a \right ) y+a x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6092

\[ {} b y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6093

\[ {} \left (\operatorname {c0} \,x^{2}+\operatorname {b0} x +\operatorname {a0} \right ) y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6094

\[ {} c y+\left (b x +a \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6095

\[ {} \left (c^{2} x^{2}+b^{2}\right ) y-x y^{\prime }+\left (a^{2}-x^{2}\right ) y^{\prime \prime } = 0 \]

6096

\[ {} -12 y-8 x y^{\prime }+\left (a^{2}-x^{2}\right ) y^{\prime \prime } = 0 \]

6097

\[ {} y+2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0 \]

6098

\[ {} 2 y-2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0 \]

6099

\[ {} 6 y+2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0 \]

6100

\[ {} 6 y-2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0 \]