Internal
problem
ID
[7765]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
6.
Existence
and
uniqueness
of
solutions
to
systems
and
nth
order
equations.
Page
238
Problem
number
:
2
Date
solved
:
Wednesday, March 05, 2025 at 04:54:54 AM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]
With initial conditions
ode:=diff(diff(y(x),x),x) = 1+diff(y(x),x)^2; ic:=y(0) = 0, D(y)(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]==1+(D[y[x],x])^2; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)) - 1,0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)