Internal
problem
ID
[7511]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.2
FIRST
ORDER
ODE.
Page
114
Problem
number
:
Example
3.10
Date
solved
:
Wednesday, March 05, 2025 at 04:42:47 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=diff(y(x),x) = 1/2*y(x)/x+1/2*x^2/y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]/(2*x)+x^2/(2*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2/(2*y(x)) + Derivative(y(x), x) - y(x)/(2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)