47.1.1 problem 1

Internal problem ID [7382]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 1. First order differential equations. Section 1.1 Separable equations problems. page 7
Problem number : 1
Date solved : Wednesday, March 05, 2025 at 04:24:38 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {x^{2}}{y} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 33
ode:=diff(y(x),x) = x^2/y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {6 x^{3}+9 c_{1}}}{3} \\ y &= \frac {\sqrt {6 x^{3}+9 c_{1}}}{3} \\ \end{align*}
Mathematica. Time used: 0.094 (sec). Leaf size: 50
ode=D[y[x],x]==x^2/y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {\frac {2}{3}} \sqrt {x^3+3 c_1} \\ y(x)\to \sqrt {\frac {2}{3}} \sqrt {x^3+3 c_1} \\ \end{align*}
Sympy. Time used: 0.291 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2/y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {C_{1} + 6 x^{3}}}{3}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} + 6 x^{3}}}{3}\right ] \]