44.3.29 problem 39

Internal problem ID [7010]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Review problems at page 34
Problem number : 39
Date solved : Wednesday, March 05, 2025 at 04:02:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 20
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)-3*y(x) = 6*x+4; 
ic:=y(0) = 0, D(y)(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -\frac {{\mathrm e}^{-x}}{2}+\frac {{\mathrm e}^{3 x}}{2}-2 x \]
Mathematica. Time used: 0.013 (sec). Leaf size: 27
ode=D[y[x],{x,2}]-2*D[y[x],x]-3*y[x]==6*x+4; 
ic={y[0]==0,Derivative[1][y][0] == 0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} e^{-x} \left (-4 e^x x+e^{4 x}-1\right ) \]
Sympy. Time used: 0.275 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*x - 3*y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 4,0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - 2 x + \frac {e^{3 x}}{2} - \frac {e^{- x}}{2} \]