29.28.12 problem 810

Internal problem ID [5393]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 28
Problem number : 810
Date solved : Tuesday, March 04, 2025 at 09:32:50 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 20
ode:=diff(y(x),x)^2+(x+y(x))*diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -\frac {x^{2}}{2}+c_{1} \\ y \left (x \right ) &= {\mathrm e}^{-x} c_{1} \\ \end{align*}
Mathematica. Time used: 0.036 (sec). Leaf size: 32
ode=(D[y[x],x])^2+(x+y[x])*D[y[x],x]+x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 e^{-x} \\ y(x)\to -\frac {x^2}{2}+c_1 \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.168 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) + (x + y(x))*Derivative(y(x), x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \frac {x^{2}}{2}, \ y{\left (x \right )} = C_{1} e^{- x}\right ] \]