Internal
problem
ID
[5270]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
24
Problem
number
:
679
Date
solved
:
Tuesday, March 04, 2025 at 09:00:14 PM
CAS
classification
:
[_rational]
ode:=(x*a^2+y(x)*(x^2-y(x)^2))*diff(y(x),x)+x*(x^2-y(x)^2) = a^2*y(x); dsolve(ode,y(x), singsol=all);
ode=(a^2*x+y[x]*(x^2-y[x]^2))*D[y[x],x]+x*(x^2-y[x]^2)==a^2*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a**2*y(x) + x*(x**2 - y(x)**2) + (a**2*x + (x**2 - y(x)**2)*y(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out