Internal
problem
ID
[5176]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
21
Problem
number
:
582
Date
solved
:
Tuesday, March 04, 2025 at 08:24:04 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class C`], _dAlembert]
ode:=x^2*(4*x-3*y(x))*diff(y(x),x) = (6*x^2-3*x*y(x)+2*y(x)^2)*y(x); dsolve(ode,y(x), singsol=all);
ode=x^2(4 x-3 y[x])D[y[x],x]==(6 x^2-3 x y[x]+2 y[x]^2)y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(4*x - 3*y(x))*Derivative(y(x), x) - (6*x**2 - 3*x*y(x) + 2*y(x)**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)