4.7.4 Problems 301 to 400

Table 4.565: Solved using series method

#

ODE

Mathematica

Maple

Sympy

1933

\[ {} y^{\prime \prime }+\left (x^{2}+2 x +1\right ) y^{\prime }+2 y = 0 \]

1934

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+x y = 0 \]

1935

\[ {} \left (1+x \right ) y^{\prime \prime }+\left (2 x^{2}-3 x +1\right ) y^{\prime }-\left (x -4\right ) y = 0 \]

1936

\[ {} y^{\prime \prime }+\left (3 x^{2}+12 x +13\right ) y^{\prime }+\left (5+2 x \right ) y = 0 \]

1937

\[ {} \left (3 x^{2}+2 x +1\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

1938

\[ {} \left (x^{2}+4 x +3\right ) y^{\prime \prime }-\left (-x^{2}+4 x +5\right ) y^{\prime }-\left (x +2\right ) y = 0 \]

1939

\[ {} \left (x^{2}+2 x +1\right ) y^{\prime \prime }+\left (1-x \right ) y = 0 \]

1940

\[ {} \left (-2 x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+3 x +1\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

1941

\[ {} \left (2 x^{2}-11 x +16\right ) y^{\prime \prime }+\left (x^{2}-6 x +10\right ) y^{\prime }-\left (2-x \right ) y = 0 \]

1942

\[ {} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

1943

\[ {} x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (1+x \right ) y^{\prime }-\left (1-4 x \right ) y = 0 \]

1944

\[ {} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (2+2 x \right ) y = 0 \]

1945

\[ {} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (5 x^{2}+3 x +3\right ) y^{\prime }+y = 0 \]

1946

\[ {} 3 x^{2} y^{\prime \prime }+2 x \left (-2 x^{2}+x +1\right ) y^{\prime }+\left (-8 x^{2}+2 x \right ) y = 0 \]

1947

\[ {} x^{2} \left (x^{2}+3 x +3\right ) y^{\prime \prime }+x \left (7 x^{2}+8 x +5\right ) y^{\prime }-\left (-9 x^{2}-2 x +1\right ) y = 0 \]

1948

\[ {} 4 x^{2} y^{\prime \prime }+x \left (4 x^{2}+2 x +7\right ) y^{\prime }-\left (-7 x^{2}-4 x +1\right ) y = 0 \]

1949

\[ {} 12 x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y = 0 \]

1950

\[ {} x^{2} \left (10 x^{2}+x +5\right ) y^{\prime \prime }+x \left (48 x^{2}+3 x +4\right ) y^{\prime }+\left (36 x^{2}+x \right ) y = 0 \]

1951

\[ {} 8 x^{2} y^{\prime \prime }-2 x \left (-x^{2}-4 x +3\right ) y^{\prime }+\left (x^{2}+6 x +3\right ) y = 0 \]

1952

\[ {} 18 x^{2} \left (1+x \right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y = 0 \]

1953

\[ {} x \left (x^{2}+x +3\right ) y^{\prime \prime }+\left (-x^{2}+x +4\right ) y^{\prime }+x y = 0 \]

1954

\[ {} 10 x^{2} \left (2 x^{2}+x +1\right ) y^{\prime \prime }+x \left (66 x^{2}+13 x +13\right ) y^{\prime }-\left (10 x^{2}+4 x +1\right ) y = 0 \]

1955

\[ {} 2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

1956

\[ {} x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (5+4 x \right ) y^{\prime }-\left (1-2 x \right ) y = 0 \]

1957

\[ {} 2 x^{2} y^{\prime \prime }+x \left (5+x \right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

1958

\[ {} 3 x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

1959

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (1-2 x \right ) y = 0 \]

1960

\[ {} 9 x^{2} y^{\prime \prime }+9 x y^{\prime }-\left (3 x +1\right ) y = 0 \]

1961

\[ {} 3 x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

1962

\[ {} 2 x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

1963

\[ {} x^{2} \left (x +4\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

1964

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (1+x \right ) y = 0 \]

1965

\[ {} x^{2} \left (3+4 x \right ) y^{\prime \prime }+x \left (5+18 x \right ) y^{\prime }-\left (1-12 x \right ) y = 0 \]

1966

\[ {} 6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (x +2\right ) y = 0 \]

1967

\[ {} x^{2} \left (x +8\right ) y^{\prime \prime }+x \left (3 x +2\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

1968

\[ {} x^{2} \left (3+4 x \right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (3+4 x \right ) y = 0 \]

1969

\[ {} 2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y = 0 \]

1970

\[ {} x^{2} \left (x +2\right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y = 0 \]

1971

\[ {} x^{2} \left (6+x \right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

1972

\[ {} 8 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+y = 0 \]

1973

\[ {} 8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

1974

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y = 0 \]

1975

\[ {} x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 x y = 0 \]

1976

\[ {} 4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y = 0 \]

1977

\[ {} 3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y = 0 \]

1978

\[ {} 2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y = 0 \]

1979

\[ {} 2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

1980

\[ {} 2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y = 0 \]

1981

\[ {} 3 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+5 x \left (x^{2}+1\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

1982

\[ {} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 x y = 0 \]

1983

\[ {} x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }-y = 0 \]

1984

\[ {} 2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y = 0 \]

1985

\[ {} 9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

1986

\[ {} 6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y = 0 \]

1987

\[ {} x^{2} \left (x^{2}+8\right ) y^{\prime \prime }+7 x \left (x^{2}+2\right ) y^{\prime }-\left (-9 x^{2}+2\right ) y = 0 \]

1988

\[ {} 9 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+3\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

1989

\[ {} 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

1990

\[ {} 8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y = 0 \]

1991

\[ {} 2 x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

1992

\[ {} 6 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (50 x^{2}+1\right ) y^{\prime }+\left (30 x^{2}+1\right ) y = 0 \]

1993

\[ {} 28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y = 0 \]

1994

\[ {} 9 x^{2} \left (5+x \right ) y^{\prime \prime }+9 x \left (5+9 x \right ) y^{\prime }-\left (5-8 x \right ) y = 0 \]

1995

\[ {} 8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y = 0 \]

1996

\[ {} 4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y = 0 \]

1997

\[ {} 3 x^{2} \left (1+x \right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

1998

\[ {} 4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y = 0 \]

1999

\[ {} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

2000

\[ {} 2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

2001

\[ {} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

2002

\[ {} x^{2} y^{\prime \prime }-x \left (5-x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

2003

\[ {} x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

2004

\[ {} x^{2} \left (2 x^{2}+x +1\right ) y^{\prime \prime }+x \left (7 x^{2}+6 x +3\right ) y^{\prime }+\left (-3 x^{2}+6 x +1\right ) y = 0 \]

2005

\[ {} x^{2} \left (x^{2}+2 x +1\right ) y^{\prime \prime }+x \left (4 x^{2}+3 x +1\right ) y^{\prime }-x \left (1-2 x \right ) y = 0 \]

2006

\[ {} 4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (1+x \right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y = 0 \]

2007

\[ {} x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }-x \left (-2 x^{2}-4 x +1\right ) y^{\prime }+y = 0 \]

2008

\[ {} 9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y = 0 \]

2009

\[ {} x^{2} y^{\prime \prime }+x \left (x^{2}+x +1\right ) y^{\prime }+x \left (2-x \right ) y = 0 \]

2010

\[ {} x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+14 x +5\right ) y^{\prime }+\left (12 x^{2}+18 x +4\right ) y = 0 \]

2011

\[ {} 4 x^{2} y^{\prime \prime }+2 x \left (x^{2}+x +4\right ) y^{\prime }+\left (3 x^{2}+5 x +1\right ) y = 0 \]

2012

\[ {} 16 x^{2} y^{\prime \prime }+4 x \left (2 x^{2}+x +6\right ) y^{\prime }+\left (18 x^{2}+5 x +1\right ) y = 0 \]

2013

\[ {} 9 x^{2} \left (1+x \right ) y^{\prime \prime }+3 x \left (-x^{2}+11 x +5\right ) y^{\prime }+\left (-7 x^{2}+16 x +1\right ) y = 0 \]

2014

\[ {} 4 x^{2} y^{\prime \prime }+\left (1+4 x \right ) y = 0 \]

2015

\[ {} 36 x^{2} \left (1-2 x \right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y = 0 \]

2016

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (3-x \right ) y^{\prime }+4 y = 0 \]

2017

\[ {} x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5-4 x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

2018

\[ {} 25 x^{2} y^{\prime \prime }+x \left (15+x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

2019

\[ {} 2 x^{2} \left (x +2\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (1-x \right ) y = 0 \]

2020

\[ {} x^{2} \left (4 x +9\right ) y^{\prime \prime }+3 x y^{\prime }+\left (1+x \right ) y = 0 \]

2021

\[ {} x^{2} y^{\prime \prime }-x \left (3-2 x \right ) y^{\prime }+\left (3 x +4\right ) y = 0 \]

2022

\[ {} x^{2} \left (1-4 x \right ) y^{\prime \prime }+3 x \left (1-6 x \right ) y^{\prime }+\left (1-12 x \right ) y = 0 \]

2023

\[ {} x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3+5 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

2024

\[ {} 2 x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y = 0 \]

2025

\[ {} x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y = 0 \]

2026

\[ {} x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5+4 x \right ) y^{\prime }+\left (4 x +9\right ) y = 0 \]

2027

\[ {} x^{2} \left (1+4 x \right ) y^{\prime \prime }-x \left (1-4 x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

2028

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }+x y = 0 \]

2029

\[ {} x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y = 0 \]

2030

\[ {} x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

2031

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-3 x \left (-x^{2}+1\right ) y^{\prime }+4 y = 0 \]

2032

\[ {} 4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]