29.18.14 problem 490

Internal problem ID [5088]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 18
Problem number : 490
Date solved : Tuesday, March 04, 2025 at 07:54:21 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \end{align*}

Maple. Time used: 0.948 (sec). Leaf size: 38
ode:=(7*x+5*y(x))*diff(y(x),x)+10*x+8*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = x \left (\operatorname {RootOf}\left (\textit {\_Z}^{25} c_{1} x^{5}-2 \textit {\_Z}^{20} c_{1} x^{5}+\textit {\_Z}^{15} c_{1} x^{5}-1\right )^{5}-2\right ) \]
Mathematica. Time used: 2.359 (sec). Leaf size: 276
ode=(7 x+5 y[x])D[y[x],x]+10 x+8 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {Root}\left [\text {$\#$1}^5+8 \text {$\#$1}^4 x+25 \text {$\#$1}^3 x^2+38 \text {$\#$1}^2 x^3+28 \text {$\#$1} x^4+8 x^5-e^{c_1}\&,1\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+8 \text {$\#$1}^4 x+25 \text {$\#$1}^3 x^2+38 \text {$\#$1}^2 x^3+28 \text {$\#$1} x^4+8 x^5-e^{c_1}\&,2\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+8 \text {$\#$1}^4 x+25 \text {$\#$1}^3 x^2+38 \text {$\#$1}^2 x^3+28 \text {$\#$1} x^4+8 x^5-e^{c_1}\&,3\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+8 \text {$\#$1}^4 x+25 \text {$\#$1}^3 x^2+38 \text {$\#$1}^2 x^3+28 \text {$\#$1} x^4+8 x^5-e^{c_1}\&,4\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+8 \text {$\#$1}^4 x+25 \text {$\#$1}^3 x^2+38 \text {$\#$1}^2 x^3+28 \text {$\#$1} x^4+8 x^5-e^{c_1}\&,5\right ] \\ \end{align*}
Sympy. Time used: 0.736 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(10*x + (7*x + 5*y(x))*Derivative(y(x), x) + 8*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (x \right )} = C_{1} - \log {\left (\left (1 + \frac {y{\left (x \right )}}{x}\right )^{\frac {2}{5}} \left (2 + \frac {y{\left (x \right )}}{x}\right )^{\frac {3}{5}} \right )} \]