4.4.33 Problems 3201 to 3300

Table 4.479: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

16284

\[ {} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

16326

\[ {} 2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

16361

\[ {} 4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

16362

\[ {} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16363

\[ {} 2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

16364

\[ {} 2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16365

\[ {} 4 x^{2} y^{\prime \prime }+17 y = 0 \]

16366

\[ {} 9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

16367

\[ {} 2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

16368

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

16369

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

16370

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

16371

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

16372

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

16391

\[ {} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16392

\[ {} 2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16393

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16394

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

16403

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16404

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16405

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16410

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16412

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16414

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16415

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

16416

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16417

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16419

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16420

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16427

\[ {} 6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

16479

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16480

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16481

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16482

\[ {} \left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

16483

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16484

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16485

\[ {} 6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16486

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16487

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16488

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16489

\[ {} 2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16490

\[ {} 15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16491

\[ {} 20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16492

\[ {} 12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16510

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16511

\[ {} y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

16512

\[ {} y^{\prime \prime }+16 y = 0 \]

16513

\[ {} y^{\prime \prime }+25 y = 0 \]

16524

\[ {} y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

16525

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16526

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16527

\[ {} t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

16528

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

16529

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

16530

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16531

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

16532

\[ {} 5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16533

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

16544

\[ {} 4 x^{\prime \prime }+9 x = 0 \]

16545

\[ {} 9 x^{\prime \prime }+4 x = 0 \]

16546

\[ {} x^{\prime \prime }+64 x = 0 \]

16547

\[ {} x^{\prime \prime }+100 x = 0 \]

16548

\[ {} x^{\prime \prime }+x = 0 \]

16549

\[ {} x^{\prime \prime }+4 x = 0 \]

16550

\[ {} x^{\prime \prime }+16 x = 0 \]

16551

\[ {} x^{\prime \prime }+256 x = 0 \]

16552

\[ {} x^{\prime \prime }+9 x = 0 \]

16553

\[ {} 10 x^{\prime \prime }+\frac {x}{10} = 0 \]

16554

\[ {} x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

16555

\[ {} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

16556

\[ {} \frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

16557

\[ {} 4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

16558

\[ {} x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

16559

\[ {} x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

16581

\[ {} x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

16582

\[ {} x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

16829

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

16832

\[ {} y^{\prime \prime }+y = 0 \]

16834

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16841

\[ {} x y^{\prime \prime } = y^{\prime } \]

16842

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

16843

\[ {} x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

16845

\[ {} x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

16847

\[ {} 2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

16850

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

16851

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

16852

\[ {} y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

16854

\[ {} y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

16855

\[ {} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

16857

\[ {} y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

16858

\[ {} 3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16860

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

16861

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16862

\[ {} 3 y^{\prime } y^{\prime \prime } = 2 y \]

16863

\[ {} 2 y^{\prime \prime } = 3 y^{2} \]

16864

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

16865

\[ {} y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

16869

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

16870

\[ {} y^{\prime \prime } = {\mathrm e}^{2 y} \]

16871

\[ {} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]