Internal
problem
ID
[4655]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
2
Problem
number
:
47
Date
solved
:
Tuesday, March 04, 2025 at 07:00:36 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Riccati]
ode:=diff(y(x),x) = 1+x*(-x^3+2)+(2*x^2-y(x))*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==1+x*(2-x^3)+(2*x^2-y[x])y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(2 - x**3) - (2*x**2 - y(x))*y(x) + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)