29.1.23 problem 22

Internal problem ID [4630]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 1
Problem number : 22
Date solved : Tuesday, March 04, 2025 at 06:57:54 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=4 \csc \left (x \right ) x \left (\sin \left (x \right )^{3}+y\right ) \end{align*}

Maple. Time used: 0.039 (sec). Leaf size: 108
ode:=diff(y(x),x) = 4*csc(x)*x*(sin(x)^3+y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = -2 \left (-\frac {c_{1}}{2}+\int x \left (1-{\mathrm e}^{i x}\right )^{-4 x} \left ({\mathrm e}^{i x}+1\right )^{4 x} {\mathrm e}^{4 i \left (-\operatorname {dilog}\left ({\mathrm e}^{i x}+1\right )+\operatorname {dilog}\left (1-{\mathrm e}^{i x}\right )\right )} \left (-1+\cos \left (2 x \right )\right )d x \right ) \left (1-{\mathrm e}^{i x}\right )^{4 x} \left ({\mathrm e}^{i x}+1\right )^{-4 x} {\mathrm e}^{-4 i \left (-\operatorname {dilog}\left ({\mathrm e}^{i x}+1\right )+\operatorname {dilog}\left (1-{\mathrm e}^{i x}\right )\right )} \]
Mathematica. Time used: 6.941 (sec). Leaf size: 148
ode=D[y[x],x]==2*Csc[x]*2*x(Sin[x]^3+y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (4 i \operatorname {PolyLog}\left (2,-e^{i x}\right )-4 i \operatorname {PolyLog}\left (2,e^{i x}\right )+4 x \left (\log \left (1-e^{i x}\right )-\log \left (1+e^{i x}\right )\right )\right ) \left (\int _1^x4 \exp \left (4 K[1] \left (\log \left (1+e^{i K[1]}\right )-\log \left (1-e^{i K[1]}\right )\right )-4 i \operatorname {PolyLog}\left (2,-e^{i K[1]}\right )+4 i \operatorname {PolyLog}\left (2,e^{i K[1]}\right )\right ) K[1] \sin ^2(K[1])dK[1]+c_1\right ) \]
Sympy. Time used: 13.401 (sec). Leaf size: 44
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x*(y(x) + sin(x)**3)/sin(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ - 4 \int x \left (e^{- 4 \int \frac {x}{\sin {\left (x \right )}}\, dx}\right ) \sin ^{2}{\left (x \right )}\, dx - 4 \int \frac {x y{\left (x \right )} e^{- 4 \int \frac {x}{\sin {\left (x \right )}}\, dx}}{\sin {\left (x \right )}}\, dx = C_{1} \]