|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} y^{\prime } = -\cot \left (t \right ) y+6 \cos \left (t \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-x y^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime }+x y^{2} = 4 y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y \left (2 x^{2} y^{2}+1\right ) y^{\prime }+x \left (1+y^{4}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }+3 x +y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (\cos \left (x \right )^{2}+y \sin \left (2 x \right )\right ) y^{\prime }+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime }+4 x y = \left (-x^{2}+1\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }-\cot \left (x \right ) y+\frac {1}{\sin \left (x \right )} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +y^{3}\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{x y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (y-x \right ) y^{\prime }+2 x +3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1}{x +2 y+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = -\frac {x +y}{3 x +3 y-4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-\frac {y}{x} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-y \tan \left (x \right ) = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sin \left (x \right ) y^{\prime }+2 \cos \left (x \right ) y = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (5 x +y-7\right ) y^{\prime } = 3 x +3 y+3
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y-\frac {y^{2}}{x^{{3}/{2}}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y^{2}}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {\mathrm e}^{x +y} y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y}{x \ln \left (x \right )}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y-\left (x -2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y-x y^{\prime } = 3-2 x^{2} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+32
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-a +x \right ) \left (x -b \right ) y^{\prime }-y+c = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime }+y^{2} = -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime }+x y = a x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y^{3} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime }-4 x y = x^{7} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y = 2 x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\frac {2 x y}{x^{2}+1} = 4 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-y \tan \left (x \right ) = 8 \sin \left (x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t x^{\prime }+2 x = 4 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 1-\sin \left (x \right ) y-\cos \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-\frac {y}{x} = 2 \ln \left (x \right ) x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\alpha y = {\mathrm e}^{\beta x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\frac {m}{x} = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (3 x -y\right ) y^{\prime } = 3 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sin \left (\frac {y}{x}\right ) \left (x y^{\prime }-y\right ) = x \cos \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = \sqrt {16 x^{2}-y^{2}}+y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = \sqrt {9 x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime } = y^{2}+3 x y+x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime } = \sqrt {x^{2}+y^{2}}-x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x \left (y+2 x \right ) y^{\prime } = y \left (4 x -y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{x y}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = -y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y}{2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {{\mathrm e}^{x}-\sin \left (y\right )}{x \cos \left (y\right )}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1-y^{2}}{2+2 x y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {\left (1-y \,{\mathrm e}^{x y}\right ) {\mathrm e}^{-x y}}{x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \frac {x^{2} \left (1-y^{2}\right )+y \,{\mathrm e}^{\frac {y}{x}}}{x \left ({\mathrm e}^{\frac {y}{x}}+2 x^{2} y\right )}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1}{x^{{2}/{3}}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \ln \left (x \right ) x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y^{2}}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {\mathrm e}^{x +y} y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y}{x \ln \left (x \right )}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y-\left (x -1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y-x y^{\prime } = 3-2 x^{2} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-a +x \right ) \left (x -b \right ) y^{\prime }-y+c = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime }+y^{2} = -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime }+x y = a x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y^{3} \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \frac {2 \sqrt {-1+y}}{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} m v^{\prime } = m g -k v^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+y = 4 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\frac {2 y}{x} = 5 x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime }-4 x y = x^{7} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|