4.1.9 Problems 801 to 900

Table 4.17: First order ode

#

ODE

Mathematica

Maple

Sympy

2358

\[ {} y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]

2359

\[ {} y^{\prime } = t^{2}+y^{2} \]

2360

\[ {} y^{\prime } = t \left (1+y\right ) \]

2361

\[ {} y^{\prime } = t \sqrt {1-y^{2}} \]

2472

\[ {} \cos \left (t \right ) y+y^{\prime } = 0 \]

2473

\[ {} \sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

2474

\[ {} \frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

2475

\[ {} y+y^{\prime } = {\mathrm e}^{t} t \]

2476

\[ {} t^{2} y+y^{\prime } = 1 \]

2477

\[ {} t^{2} y+y^{\prime } = t^{2} \]

2478

\[ {} \frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

2479

\[ {} \sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]

2480

\[ {} \sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

2481

\[ {} \sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

2482

\[ {} y^{\prime }-2 t y = t \]

2483

\[ {} t y+y^{\prime } = t +1 \]

2484

\[ {} y+y^{\prime } = \frac {1}{t^{2}+1} \]

2485

\[ {} y^{\prime }-2 t y = 1 \]

2486

\[ {} t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

2487

\[ {} 4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]

2488

\[ {} y+y^{\prime } = \left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \]

2489

\[ {} \left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

2490

\[ {} y^{\prime } = \left (t +1\right ) \left (1+y\right ) \]

2491

\[ {} y^{\prime } = 1-t +y^{2}-t y^{2} \]

2492

\[ {} y^{\prime } = {\mathrm e}^{3+t +y} \]

2493

\[ {} \cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

2494

\[ {} t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]

2495

\[ {} y^{\prime } = \frac {2 t}{y+t^{2} y} \]

2496

\[ {} \sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]

2497

\[ {} y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]

2498

\[ {} \cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]

2499

\[ {} y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]

2500

\[ {} 3 t y^{\prime } = \cos \left (t \right ) y \]

2501

\[ {} y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

2502

\[ {} t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]

2503

\[ {} 2 t y y^{\prime } = 3 y^{2}-t^{2} \]

2504

\[ {} \left (t -\sqrt {t y}\right ) y^{\prime } = y \]

2505

\[ {} y^{\prime } = \frac {t +y}{t -y} \]

2506

\[ {} {\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

2507

\[ {} y^{\prime } = \frac {t +y+1}{t -y+3} \]

2508

\[ {} 1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

2509

\[ {} t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

2510

\[ {} 2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

2511

\[ {} 1+{\mathrm e}^{t y} \left (1+t y\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

2512

\[ {} \sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

2513

\[ {} \frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

2514

\[ {} 2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]

2515

\[ {} 2 t \cos \left (y\right )+3 t^{2} y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2516

\[ {} 3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2517

\[ {} 2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]

2518

\[ {} 3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]

2519

\[ {} y^{\prime } = 2 t \left (1+y\right ) \]

2520

\[ {} y^{\prime } = t^{2}+y^{2} \]

2521

\[ {} y^{\prime } = {\mathrm e}^{t}+y^{2} \]

2522

\[ {} y^{\prime } = y^{2}+\cos \left (t \right )^{2} \]

2523

\[ {} y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

2524

\[ {} y^{\prime } = t +y^{2} \]

2525

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2526

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2527

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2528

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

2529

\[ {} y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2530

\[ {} y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]

2531

\[ {} y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2532

\[ {} y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2533

\[ {} y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]

2534

\[ {} y^{\prime } = t^{2}+y^{2} \]

2535

\[ {} y^{\prime } = t \left (1+y\right ) \]

2536

\[ {} y^{\prime } = t y^{a} \]

2537

\[ {} y^{\prime } = t \sqrt {1-y^{2}} \]

2538

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+2 t \]

2539

\[ {} y^{\prime } = 1-t +y^{2} \]

2540

\[ {} y^{\prime } = \frac {t^{2}+y^{2}}{1+t +y^{2}} \]

2541

\[ {} y^{\prime } = {\mathrm e}^{t} y^{2}-2 y \]

2542

\[ {} y^{\prime } = t y^{3}-y \]

2809

\[ {} x^{\prime } = x \left (1-x\right ) \]

2810

\[ {} x^{\prime } = -x \left (1-x\right ) \]

2811

\[ {} x^{\prime } = x^{2} \]

2841

\[ {} x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

2842

\[ {} x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

2843

\[ {} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

2844

\[ {} y+x y^{\prime } = 0 \]

2845

\[ {} y^{\prime } = 2 x y \]

2846

\[ {} x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

2847

\[ {} \sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

2848

\[ {} \left (1+x \right ) y^{\prime }-1+y = 0 \]

2849

\[ {} \tan \left (x \right ) y^{\prime }-y = 1 \]

2850

\[ {} y+3+\cot \left (x \right ) y^{\prime } = 0 \]

2851

\[ {} y^{\prime } = \frac {x}{y} \]

2852

\[ {} x^{\prime } = 1-\sin \left (2 t \right ) \]

2853

\[ {} y+x y^{\prime } = y^{2} \]

2854

\[ {} \sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

2855

\[ {} \sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

2856

\[ {} y+x y^{\prime } = x y \left (y^{\prime }-1\right ) \]

2857

\[ {} x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

2858

\[ {} y = x y+x^{2} y^{\prime } \]

2859

\[ {} \tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

2860

\[ {} y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

2861

\[ {} y^{\prime } = \frac {y}{x} \]

2862

\[ {} x y^{\prime }+2 y = 0 \]