Internal
problem
ID
[2232]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.4.
Variation
of
Parameters
for
Higher
Order
Equations.
Page
503
Problem
number
:
section
9.4,
problem
30
Date
solved
:
Tuesday, March 04, 2025 at 01:52:08 PM
CAS
classification
:
[[_high_order, _exact, _linear, _nonhomogeneous]]
With initial conditions
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+3*x^3*diff(diff(diff(y(x),x),x),x)-x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = 9*x^2; ic:=y(1) = -7, D(y)(1) = -11, (D@@2)(y)(1) = -5, (D@@3)(y)(1) = 6; dsolve([ode,ic],y(x), singsol=all);
ode=x^4*D[y[x],{x,4}]+3*x^3*D[y[x],{x,3}]-x^2*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==9*x^2; ic={y[1]==-7,Derivative[1][y][1]==-11,Derivative[2][y][1]==-5,Derivative[3][y][1]==6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 3*x**3*Derivative(y(x), (x, 3)) - x**2*Derivative(y(x), (x, 2)) - 9*x**2 + 2*x*Derivative(y(x), x) - 2*y(x),0) ics = {y(1): -7, Subs(Derivative(y(x), x), x, 1): -11, Subs(Derivative(y(x), (x, 2)), x, 1): -5, Subs(Derivative(y(x), (x, 3)), x, 1): 6} dsolve(ode,func=y(x),ics=ics)