Internal
problem
ID
[1872]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.2
SERIES
SOLUTIONS
NEAR
AN
ORDINARY
POINT
I.
Exercises
7.2.
Page
329
Problem
number
:
20
Date
solved
:
Tuesday, March 04, 2025 at 01:45:27 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
Order:=6; ode:=(3*x^2+6*x+5)*diff(diff(y(x),x),x)+9*(1+x)*diff(y(x),x)+3*y(x) = 0; dsolve(ode,y(x),type='series',x=-1);
ode=(5+6*x+2*x^2)*D[y[x],{x,2}]+9*(x+1)*D[y[x],x]+3*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-1,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((9*x + 9)*Derivative(y(x), x) + (3*x**2 + 6*x + 5)*Derivative(y(x), (x, 2)) + 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=-1,n=6)