Internal
problem
ID
[1440]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
7.9,
Nonhomogeneous
Linear
Systems.
page
447
Problem
number
:
13
Date
solved
:
Tuesday, March 04, 2025 at 12:35:57 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -1/2*x__1(t)-1/8*x__2(t)+1/2*exp(-1/2*t), diff(x__2(t),t) = 2*x__1(t)-1/2*x__2(t)]; dsolve(ode);
ode={D[ x1[t],t]==-1/2*x1[t]-1/8*x2[t]+1/2*Exp[-t/2],D[ x2[t],t]==2*x1[t]-1/2*x2[t]+0}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(x__1(t)/2 + x__2(t)/8 + Derivative(x__1(t), t) - exp(-t/2)/2,0),Eq(-2*x__1(t) + x__2(t)/2 + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)