Internal
problem
ID
[18846]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VII.
Linear
equations
with
variable
coefficients.
Problems
at
page
85
Problem
number
:
Ex.
1
Date
solved
:
Thursday, March 13, 2025 at 01:03:17 PM
CAS
classification
:
[[_3rd_order, _exact, _linear, _homogeneous]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+3*x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+3*x^2*D[y[x],{x,2}]+x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 3*x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)