Internal
problem
ID
[18836]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VI.
Linear
equations
with
constant
coefficients.
Examples
on
chapter
VI,
page
80
Problem
number
:
Ex.
22
Date
solved
:
Thursday, March 13, 2025 at 01:02:26 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+4*diff(y(x),x)+4*y(x) = x^2*exp(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-2*D[y[x],{x,3}]-3*D[y[x],{x,2}]+4*D[y[x],x]+4*y[x]==x^2*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*exp(x) + 4*y(x) + 4*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) - 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)