Internal
problem
ID
[18827]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VI.
Linear
equations
with
constant
coefficients.
Examples
on
chapter
VI,
page
80
Problem
number
:
Ex.
13
Date
solved
:
Thursday, March 13, 2025 at 01:00:12 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = x^2*exp(3*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==x^2*Exp[3*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*exp(3*x) + y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)