Internal
problem
ID
[18822]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VI.
Linear
equations
with
constant
coefficients.
Examples
on
chapter
VI,
page
80
Problem
number
:
Ex.
8
Date
solved
:
Thursday, March 13, 2025 at 01:00:05 PM
CAS
classification
:
[[_high_order, _missing_y]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+diff(diff(diff(y(x),x),x),x)+diff(diff(y(x),x),x) = x^2*(b*x+a); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+D[y[x],{x,3}]+D[y[x],{x,2}]==x^2*(a+b*x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-x**2*(a + b*x) + Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)