Internal
problem
ID
[17441]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
3.
Systems
of
two
first
order
equations.
Section
3.5
(Repeated
Eigenvalues).
Problems
at
page
188
Problem
number
:
10
Date
solved
:
Thursday, March 13, 2025 at 10:08:26 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 5/4*x(t)+3/4*y(t), diff(y(t),t) = -3/4*x(t)-1/4*y(t)]; ic:=x(0) = 2y(0) = 3; dsolve([ode,ic]);
ode={D[x[t],t]==5/4*x[t]+3/4*y[t],D[y[t],t]==-3/4*x[t]-1/4*y[t]}; ic={x[0]==2,y[0]==3}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-5*x(t)/4 - 3*y(t)/4 + Derivative(x(t), t),0),Eq(3*x(t)/4 + y(t)/4 + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)