Internal
problem
ID
[16395]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.7,
page
195
Problem
number
:
35
Date
solved
:
Thursday, March 13, 2025 at 08:12:27 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^3*diff(diff(diff(y(x),x),x),x)+10*x^2*diff(diff(y(x),x),x)-20*x*diff(y(x),x)+20*y(x) = 0; ic:=y(1) = 0, D(y)(1) = -1, (D@@2)(y)(1) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+10*x^2*D[y[x],{x,2}]-20*x*D[y[x],x]+20*y[x]==0; ic={y[1]==0,Derivative[1][y][1]==-1,Derivative[2][y][1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 10*x**2*Derivative(y(x), (x, 2)) - 20*x*Derivative(y(x), x) + 20*y(x),0) ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): -1, Subs(Derivative(y(x), (x, 2)), x, 1): 1} dsolve(ode,func=y(x),ics=ics)