74.4.13 problem 13

Internal problem ID [15827]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.2, page 39
Problem number : 13
Date solved : Thursday, March 13, 2025 at 06:46:17 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }+k y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 11
ode:=diff(y(x),x)+k*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} {\mathrm e}^{-k x} \]
Mathematica. Time used: 0.024 (sec). Leaf size: 19
ode=D[y[x],x]+k*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 e^{-k x} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.104 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
k = symbols("k") 
y = Function("y") 
ode = Eq(k*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- k x} \]