Internal
problem
ID
[15035]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
6.
Simplifying
through
simplifiction.
Additional
exercises.
page
114
Problem
number
:
6.1
(c)
Date
solved
:
Thursday, March 13, 2025 at 05:28:27 AM
CAS
classification
:
[[_homogeneous, `class C`], _exact, _dAlembert]
ode:=cos(-4*y(x)+8*x-3)*diff(y(x),x) = 2+2*cos(-4*y(x)+8*x-3); dsolve(ode,y(x), singsol=all);
ode=Cos[4*y[x]-8*x+3]*D[y[x],x]==2+2*Cos[4*y[x]-8*x+3]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(cos(-8*x + 4*y(x) + 3)*Derivative(y(x), x) - 2*cos(-8*x + 4*y(x) + 3) - 2,0) ics = {} dsolve(ode,func=y(x),ics=ics)