Internal
problem
ID
[14827]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
4.
Forcing
and
Resonance.
Section
4.1
page
399
Problem
number
:
10
Date
solved
:
Thursday, March 13, 2025 at 04:20:31 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(t),t),t)+7*diff(y(t),t)+12*y(t) = 3*exp(-t); ic:=y(0) = 2, D(y)(0) = 1; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],{t,2}]+7*D[y[t],t]+12*y[t]==3*Exp[-t]; ic={y[0]==2,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(12*y(t) + 7*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 3*exp(-t),0) ics = {y(0): 2, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)