64.2.2 problem 2(a)

Internal problem ID [13183]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 1, section 1.3. Exercises page 22
Problem number : 2(a)
Date solved : Wednesday, March 05, 2025 at 09:20:01 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+y&=2 x \,{\mathrm e}^{-x} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 14
ode:=diff(y(x),x)+y(x) = 2*x*exp(-x); 
ic:=y(0) = 2; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \left (x^{2}+2\right ) {\mathrm e}^{-x} \]
Mathematica. Time used: 0.058 (sec). Leaf size: 16
ode=D[y[x],x]+y[x]==2*x*Exp[-x]; 
ic={y[0]==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} \left (x^2+2\right ) \]
Sympy. Time used: 0.168 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*exp(-x) + y(x) + Derivative(y(x), x),0) 
ics = {y(0): 2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (x^{2} + 2\right ) e^{- x} \]