63.19.7 problem 3(a)

Internal problem ID [13142]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 4, Linear Systems. Exercises page 202
Problem number : 3(a)
Date solved : Wednesday, March 05, 2025 at 09:18:09 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=2 x \left (t \right )+3 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-x \left (t \right )-14 \end{align*}

Maple. Time used: 0.065 (sec). Leaf size: 76
ode:=[diff(x(t),t) = 2*x(t)+3*y(t), diff(y(t),t) = -x(t)-14]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= -14+{\mathrm e}^{t} \left (\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) c_{1} -\sqrt {2}\, \cos \left (\sqrt {2}\, t \right ) c_{2} -\sin \left (\sqrt {2}\, t \right ) c_{2} -\cos \left (\sqrt {2}\, t \right ) c_{1} \right ) \\ y &= \frac {28}{3}+{\mathrm e}^{t} \left (\sin \left (\sqrt {2}\, t \right ) c_{2} +\cos \left (\sqrt {2}\, t \right ) c_{1} \right ) \\ \end{align*}
Mathematica. Time used: 0.167 (sec). Leaf size: 336
ode={D[x[t],t]==2*x[t]+3*y[t],D[y[t],t]==-x[t]-14}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{2} e^t \left (\left (\sqrt {2} \sin \left (\sqrt {2} t\right )+2 \cos \left (\sqrt {2} t\right )\right ) \int _1^t21 \sqrt {2} e^{-K[1]} \sin \left (\sqrt {2} K[1]\right )dK[1]+3 \sqrt {2} \sin \left (\sqrt {2} t\right ) \int _1^t-7 e^{-K[2]} \left (2 \cos \left (\sqrt {2} K[2]\right )+\sqrt {2} \sin \left (\sqrt {2} K[2]\right )\right )dK[2]+2 c_1 \cos \left (\sqrt {2} t\right )+\sqrt {2} c_1 \sin \left (\sqrt {2} t\right )+3 \sqrt {2} c_2 \sin \left (\sqrt {2} t\right )\right ) \\ y(t)\to -\frac {1}{2} e^t \left (\sqrt {2} \sin \left (\sqrt {2} t\right ) \int _1^t21 \sqrt {2} e^{-K[1]} \sin \left (\sqrt {2} K[1]\right )dK[1]+\left (\sqrt {2} \sin \left (\sqrt {2} t\right )-2 \cos \left (\sqrt {2} t\right )\right ) \int _1^t-7 e^{-K[2]} \left (2 \cos \left (\sqrt {2} K[2]\right )+\sqrt {2} \sin \left (\sqrt {2} K[2]\right )\right )dK[2]-2 c_2 \cos \left (\sqrt {2} t\right )+\sqrt {2} c_1 \sin \left (\sqrt {2} t\right )+\sqrt {2} c_2 \sin \left (\sqrt {2} t\right )\right ) \\ \end{align*}
Sympy. Time used: 0.368 (sec). Leaf size: 122
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-2*x(t) - 3*y(t) + Derivative(x(t), t),0),Eq(x(t) + Derivative(y(t), t) + 14,0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \left (C_{1} + \sqrt {2} C_{2}\right ) e^{t} \sin {\left (\sqrt {2} t \right )} + \left (\sqrt {2} C_{1} - C_{2}\right ) e^{t} \cos {\left (\sqrt {2} t \right )} - 14 \sin ^{2}{\left (\sqrt {2} t \right )} - 14 \cos ^{2}{\left (\sqrt {2} t \right )}, \ y{\left (t \right )} = - C_{1} e^{t} \sin {\left (\sqrt {2} t \right )} + C_{2} e^{t} \cos {\left (\sqrt {2} t \right )} + \frac {28 \sin ^{2}{\left (\sqrt {2} t \right )}}{3} + \frac {28 \cos ^{2}{\left (\sqrt {2} t \right )}}{3}\right ] \]