Internal
problem
ID
[13127]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
3,
Laplace
transform.
Section
3.4
Impulsive
sources.
Exercises
page
173
Problem
number
:
10
Date
solved
:
Wednesday, March 05, 2025 at 09:17:53 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(x(t),t),t)+4*x(t) = 1/5*(t-5)*Heaviside(t-5)+(2-1/5*t)*Heaviside(t-10); ic:=x(0) = 0, D(x)(0) = 0; dsolve([ode,ic],x(t),method='laplace');
ode=D[x[t],{t,2}]+4*x[t]==1/5*(t-5)*UnitStep[t-5]+(1-1/5*(t-5))*UnitStep[t-10]; ic={x[0]==0,Derivative[1][x][0 ]==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-(2 - t/5)*Heaviside(t - 10) - (t - 5)*Heaviside(t - 5)/5 + 4*x(t) + Derivative(x(t), (t, 2)),0) ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 0} dsolve(ode,func=x(t),ics=ics)