Internal
problem
ID
[12145]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-5.
Equations
containing
combinations
of
trigonometric
functions.
Problem
number
:
50
Date
solved
:
Wednesday, March 05, 2025 at 04:53:22 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*cos(lambda*x)*y(x)^2+b*cos(lambda*x)*sin(lambda*x)^n; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*Cos[\[Lambda]*x]*y[x]^2+b*Cos[\[Lambda]*x]*Sin[\[Lambda]*x]^n; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") cg = symbols("cg") n = symbols("n") y = Function("y") ode = Eq(-a*y(x)**2*cos(cg*x) - b*sin(cg*x)**n*cos(cg*x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(a*y(x)**2 + b*sin(cg*x)**n)*cos(cg*x) + Derivative(y(x), x) cannot be solved by the factorable group method