61.9.8 problem 8

Internal problem ID [12103]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number : 8
Date solved : Wednesday, March 05, 2025 at 04:22:07 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=\left (\lambda +a \sin \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \sin \left (\lambda x \right )^{2} \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 100
ode:=diff(y(x),x) = (lambda+a*sin(lambda*x)^2)*y(x)^2+lambda-a+a*sin(lambda*x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2 \cot \left (\lambda x \right ) \lambda \left (\int {\mathrm e}^{\frac {a \cos \left (2 \lambda x \right )}{2 \lambda }} \left (\csc \left (\lambda x \right )^{2} \lambda +a \right )d x \right ) c_{1} +2 \csc \left (\lambda x \right )^{2} {\mathrm e}^{\frac {a \cos \left (2 \lambda x \right )}{2 \lambda }} c_{1} \lambda -i \cot \left (\lambda x \right )}{-2 \lambda \left (\int {\mathrm e}^{\frac {a \cos \left (2 \lambda x \right )}{2 \lambda }} \left (\csc \left (\lambda x \right )^{2} \lambda +a \right )d x \right ) c_{1} +i} \]
Mathematica. Time used: 13.217 (sec). Leaf size: 187
ode=D[y[x],x]==(\[Lambda]+a*Sin[\[Lambda]*x]^2)*y[x]^2+\[Lambda]-a+a*Sin[\[Lambda]*x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {2 \left (c_1 \cot (\lambda x) \int _1^xe^{-\frac {a \sin ^2(\lambda K[1])}{\lambda }} \left (\lambda \csc ^2(\lambda K[1])+a\right )dK[1]+c_1 \csc ^2(\lambda x) e^{-\frac {a \sin ^2(\lambda x)}{\lambda }}+\cot (\lambda x)\right )}{2+2 c_1 \int _1^xe^{-\frac {a \sin ^2(\lambda K[1])}{\lambda }} \left (\lambda \csc ^2(\lambda K[1])+a\right )dK[1]} \\ y(x)\to -\frac {\csc ^2(\lambda x) e^{-\frac {a \sin ^2(\lambda x)}{\lambda }}}{\int _1^xe^{-\frac {a \sin ^2(\lambda K[1])}{\lambda }} \left (\lambda \csc ^2(\lambda K[1])+a\right )dK[1]}-\cot (\lambda x) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
cg = symbols("cg") 
y = Function("y") 
ode = Eq(-a*sin(cg*x)**2 + a - cg - (a*sin(cg*x)**2 + cg)*y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*y(x)**2*sin(cg*x)**2 - a*sin(cg*x)**2 + a - cg*y(x)**2 - cg + Derivative(y(x), x) cannot be solved by the factorable group method