Internal
problem
ID
[11309]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1330
Date
solved
:
Thursday, March 13, 2025 at 08:47:58 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -(A*x^2+B*x+C)/(x-a)/(x-b)/(x-c)*diff(y(x),x)-(DD*x+E)/(x-a)/(x-b)/(x-c)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((E + DD*x)*y[x])/((-a + x)*(-b + x)*(-c + x))) - ((C + B*x + A*x^2)*D[y[x],x])/((-a + x)*(-b + x)*(-c + x)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") A = symbols("A") B = symbols("B") C = symbols("C") DD = symbols("DD") E = symbols("E") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (DD*x + E)*y(x)/((-a + x)*(-b + x)*(-c + x)) + (A*x**2 + B*x + C)*Derivative(y(x), x)/((-a + x)*(-b + x)*(-c + x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False