Internal
problem
ID
[11299]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1320
Date
solved
:
Wednesday, March 05, 2025 at 02:13:45 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*(x^2-2)*diff(diff(y(x),x),x)-(x^3+3*x^2-2*x-2)*diff(y(x),x)+(x^2+4*x+2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2 + 4*x + x^2)*y[x] - (-2 - 2*x + 3*x^2 + x^3)*D[y[x],x] + x*(-2 + x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2 - 2)*Derivative(y(x), (x, 2)) + (x**2 + 4*x + 2)*y(x) - (x**3 + 3*x**2 - 2*x - 2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False