60.1.362 problem 371

Internal problem ID [10376]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 371
Date solved : Wednesday, March 05, 2025 at 10:41:26 AM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}-y^{3}+y^{2}&=0 \end{align*}

Maple. Time used: 0.039 (sec). Leaf size: 22
ode:=diff(y(x),x)^2-y(x)^3+y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 1 \\ y &= 0 \\ y &= \sec \left (-\frac {x}{2}+\frac {c_{1}}{2}\right )^{2} \\ \end{align*}
Mathematica. Time used: 1.09 (sec). Leaf size: 45
ode=y[x]^2 - y[x]^3 + D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \sec ^2\left (\frac {x-c_1}{2}\right ) \\ y(x)\to 1+\tan ^2\left (\frac {x+c_1}{2}\right ) \\ y(x)\to 0 \\ y(x)\to 1 \\ \end{align*}
Sympy. Time used: 0.678 (sec). Leaf size: 68
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**3 + y(x)**2 + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \begin {cases} 2 i \operatorname {acosh}{\left (\frac {1}{\sqrt {y{\left (x \right )}}} \right )} & \text {for}\: \frac {1}{\left |{y{\left (x \right )}}\right |} > 1 \\- 2 \operatorname {asin}{\left (\frac {1}{\sqrt {y{\left (x \right )}}} \right )} & \text {otherwise} \end {cases} = C_{1} - x, \ \begin {cases} 2 i \operatorname {acosh}{\left (\frac {1}{\sqrt {y{\left (x \right )}}} \right )} & \text {for}\: \frac {1}{\left |{y{\left (x \right )}}\right |} > 1 \\- 2 \operatorname {asin}{\left (\frac {1}{\sqrt {y{\left (x \right )}}} \right )} & \text {otherwise} \end {cases} = C_{1} + x\right ] \]