60.1.196 problem 199
Internal
problem
ID
[10210]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
199
Date
solved
:
Wednesday, March 05, 2025 at 08:42:53 AM
CAS
classification
:
[_separable]
\begin{align*} \sin \left (2 x \right ) y^{\prime }+\sin \left (2 y\right )&=0 \end{align*}
✓ Maple. Time used: 0.412 (sec). Leaf size: 80
ode:=sin(2*x)*diff(y(x),x)+sin(2*y(x)) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {\arctan \left (-\frac {2 \sin \left (2 x \right ) c_{1}}{\cos \left (2 x \right ) c_{1}^{2}-c_{1}^{2}-\cos \left (2 x \right )-1}, \frac {\cos \left (2 x \right ) c_{1}^{2}-c_{1}^{2}+\cos \left (2 x \right )+1}{\cos \left (2 x \right ) c_{1}^{2}-c_{1}^{2}-\cos \left (2 x \right )-1}\right )}{2}
\]
✓ Mathematica. Time used: 0.444 (sec). Leaf size: 68
ode=Sin[2*x]*D[y[x],x] + Sin[2*y[x]]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\frac {1}{2} \arccos (-\tanh (\text {arctanh}(\cos (2 x))+2 c_1)) \\
y(x)\to \frac {1}{2} \arccos (-\tanh (\text {arctanh}(\cos (2 x))+2 c_1)) \\
y(x)\to 0 \\
y(x)\to -\frac {\pi }{2} \\
y(x)\to \frac {\pi }{2} \\
\end{align*}
✓ Sympy. Time used: 8.116 (sec). Leaf size: 80
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(sin(2*x)*Derivative(y(x), x) + sin(2*y(x)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = \pi - \frac {\operatorname {acos}{\left (\frac {- e^{4 C_{1}} \cos ^{2}{\left (x \right )} - \cos ^{2}{\left (x \right )} + 1}{e^{4 C_{1}} \cos ^{2}{\left (x \right )} - \cos ^{2}{\left (x \right )} + 1} \right )}}{2}, \ y{\left (x \right )} = \frac {\operatorname {acos}{\left (\frac {e^{4 C_{1}} \cos ^{2}{\left (x \right )} + \cos ^{2}{\left (x \right )} - 1}{- e^{4 C_{1}} \cos ^{2}{\left (x \right )} + \cos ^{2}{\left (x \right )} - 1} \right )}}{2}\right ]
\]