58.1.45 problem 45

Internal problem ID [9116]
Book : Second order enumerated odes
Section : section 1
Problem number : 45
Date solved : Wednesday, March 05, 2025 at 07:24:20 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y {y^{\prime \prime }}^{2}+y^{\prime }&=0 \end{align*}

Maple. Time used: 0.100 (sec). Leaf size: 263
ode:=y(x)*diff(diff(y(x),x),x)^2+diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= c_{1} \\ y &= 0 \\ -\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_{1} -3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} -x -c_{2} &= 0 \\ -\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_{1} +3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} -x -c_{2} &= 0 \\ \frac {-4 \left (\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_{1} -3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (-x -c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (-i \sqrt {3}-1\right )^{2}} &= 0 \\ \frac {-4 \left (\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_{1} -3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (x +c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\ \frac {-4 \left (\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_{1} +3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (-x -c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (-i \sqrt {3}-1\right )^{2}} &= 0 \\ \frac {-4 \left (\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_{1} +3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (x +c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\ \end{align*}
Mathematica. Time used: 61.031 (sec). Leaf size: 23861
ode=y[x]*D[y[x],{x,2}]^2+D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*Derivative(y(x), (x, 2))**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve y(x)*Derivative(y(x), (x, 2))**2 + Derivative(y(x), x)