57.1.59 problem 59

Internal problem ID [9043]
Book : First order enumerated odes
Section : section 1
Problem number : 59
Date solved : Wednesday, March 05, 2025 at 07:15:18 AM
CAS classification : [_separable]

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x^{3} y^{4}} \end{align*}

Maple. Time used: 0.051 (sec). Leaf size: 133
ode:=diff(y(x),x)^2 = 1/x^3/y(x)^4; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \left (\frac {\sqrt {x}\, c_{1} -6}{\sqrt {x}}\right )^{{1}/{3}} \\ y &= -\frac {\left (\frac {\sqrt {x}\, c_{1} -6}{\sqrt {x}}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2} \\ y &= \frac {\left (\frac {\sqrt {x}\, c_{1} -6}{\sqrt {x}}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )}{2} \\ y &= \left (\frac {\sqrt {x}\, c_{1} +6}{\sqrt {x}}\right )^{{1}/{3}} \\ y &= -\frac {\left (\frac {\sqrt {x}\, c_{1} +6}{\sqrt {x}}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2} \\ y &= \frac {\left (\frac {\sqrt {x}\, c_{1} +6}{\sqrt {x}}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )}{2} \\ \end{align*}
Mathematica. Time used: 3.402 (sec). Leaf size: 157
ode=(D[y[x],x])^2==1/(x^3*y[x]^4); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt [3]{-3} \sqrt [3]{-\frac {2}{\sqrt {x}}+c_1} \\ y(x)\to \sqrt [3]{3} \sqrt [3]{-\frac {2}{\sqrt {x}}+c_1} \\ y(x)\to (-1)^{2/3} \sqrt [3]{3} \sqrt [3]{-\frac {2}{\sqrt {x}}+c_1} \\ y(x)\to -\sqrt [3]{-3} \sqrt [3]{\frac {2}{\sqrt {x}}+c_1} \\ y(x)\to \sqrt [3]{3} \sqrt [3]{\frac {2}{\sqrt {x}}+c_1} \\ y(x)\to (-1)^{2/3} \sqrt [3]{3} \sqrt [3]{\frac {2}{\sqrt {x}}+c_1} \\ \end{align*}
Sympy. Time used: 4.459 (sec). Leaf size: 170
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 - 1/(x**3*y(x)**4),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt [3]{C_{1} + 6 x \sqrt {\frac {1}{x^{3}}}}, \ y{\left (x \right )} = \frac {\left (- \sqrt [3]{3} - 3^{\frac {5}{6}} i\right ) \sqrt [3]{C_{1} + 2 x \sqrt {\frac {1}{x^{3}}}}}{2}, \ y{\left (x \right )} = \frac {\left (- \sqrt [3]{3} + 3^{\frac {5}{6}} i\right ) \sqrt [3]{C_{1} + 2 x \sqrt {\frac {1}{x^{3}}}}}{2}, \ y{\left (x \right )} = \sqrt [3]{C_{1} - 6 x \sqrt {\frac {1}{x^{3}}}}, \ y{\left (x \right )} = \frac {\left (- \sqrt [3]{3} - 3^{\frac {5}{6}} i\right ) \sqrt [3]{C_{1} - 2 x \sqrt {\frac {1}{x^{3}}}}}{2}, \ y{\left (x \right )} = \frac {\left (- \sqrt [3]{3} + 3^{\frac {5}{6}} i\right ) \sqrt [3]{C_{1} - 2 x \sqrt {\frac {1}{x^{3}}}}}{2}\right ] \]